12 类二级结论高效解题

结论 1 奇函数的最值性质

已知函数 f(x)是定义在区间 D 上的奇函数,则对任意的 $x \in D$,都有 f(x)+f(-x)=0. 特别地,若奇函数 f(x)在 D 上有最值,则 $f(x)_{max}+f(x)_{min}=0$,且若 $0 \in D$,则 f(0)=0.

【例 1】 设函数
$$f(x) = \frac{(x+1)^2 + \sin x}{x^2 + 1}$$
的最大值为 M ,最小值为 m ,则 $M + m = _____.$

解析 显然函数
$$f(x)$$
的定义域为 **R**, $f(x) = \frac{(x+1)^{-2} + \sin x}{x^2 + 1} = 1 + \frac{2x + \sin x}{x^2 + 1}$,

设
$$g(x) = \frac{2x + \sin x}{x^2 + 1}$$
, 则 $g(-x) = -g(x)$, $\therefore g(x)$ 为奇函数,

由奇函数图象的对称性知 $g(x)_{max} + g(x)_{min} = 0$,

:
$$M + m = [g(x) + 1]_{max} + [g(x) + 1]_{min} = 2 + g(x)_{max} + g(x)_{min} = 2$$
.

答案 2

【训练 1】 己知函数
$$f(x) = \ln(\sqrt{1+9x^2}-3x)+1$$
,则 $f(\lg 2)+f(\lg \frac{1}{2})=($

$$A.-1$$

$$\mathbf{C}.1$$

D.2

解析 令
$$g(x) = \ln(\sqrt{1 + 9x^2} - 3x)$$
, $x \in \mathbb{R}$, 则 $g(-x) = \ln(\sqrt{1 + 9x^2} + 3x)$, 因为 $g(x) + g(-x) = \ln(\sqrt{1 + 9x^2} - 3x) + \ln(\sqrt{1 + 9x^2} + 3x) = \ln(1 + 9x^2 - 9x^2) = \ln 1 = 0$, 所以 $g(x)$ 是定义在 \mathbb{R} 的奇函数.

又 lg
$$\frac{1}{2}$$
 = - lg 2, 所以 $g(\lg 2) + g(\lg \frac{1}{2}) = 0$, 所以 $f(\lg 2) + f(\lg \frac{1}{2}) = g(\lg 2) + 1 + g(\lg \frac{1}{2}) + 1 = 2$.

答案 D

结论 2 函数周期性问题

已知定义在 \mathbf{R} 上的函数 f(x),若对任意的 $x \in \mathbf{R}$,总存在非零常数 T,使得 f(x+T)=f(x),则称 f(x)是周期函数,T 为其一个周期.

常见的与周期函数有关的结论如下:

- (1)如果 $f(x+a) = -f(x)(a \neq 0)$, 那么 f(x)是周期函数, 其中的一个周期 T=2a.
- (2)如果 $f(x+a) = \frac{1}{f(x)} (a \neq 0)$,那么f(x)是周期函数,其中的一个周期T = 2a.
- (3)如果 $f(x+a)+f(x)=c(a\neq 0)$,那么f(x)是周期函数,其中的一个周期T=2a.

(2)(多选题)(2020·济南模拟)函数 f(x)的定义域为 **R**,且 f(x+1)与 f(x+2)都为奇函数,则()

A.f(x)为奇函数

B.f(x)为周期函数

C.f(x+3)为奇函数

D.f(x+4)为偶函数

解析 (1)因为 $f(x+\frac{3}{2}) = -f(x)$, 所以 $f(x+3) = -f(x+\frac{3}{2}) = f(x)$, 则 f(x)的周期 T=3.

则有f(1) = f(-2) = -1, f(2) = f(-1) = -1, f(3) = f(0) = 2,

所以f(1) + f(2) + f(3) = 0, 所以 $f(1) + f(2) + f(3) + \cdots + f(2019) + f(2020)$

 $= f(1) + f(2) + f(3) + \cdots + f(2 017) + f(2 018) + f(2 019) + f(2 020)$

 $= 673 \times [f(1) + f(2) + f(3)] + f(2 \cdot 020) = 0 + f(1) = -1.$

(2)法一 由 f(x+1)与 f(x+2)都为奇函数知,函数 f(x)的图象关于点(1,0),(2,0)对称,所以 f(-x)+f(2+x)=0,f(-x)+f(4+x)=0,所以 f(2+x)=f(4+x),即 f(x)=f(2+x),f(x)是以 2 为 周期的周期函数.又 f(x+1)与 f(x+2)都为奇函数,所以 f(x),f(x+3),f(x+4)均为奇函数.选 ABC. 法二 由 f(x+1)与 f(x+2)都为奇函数知,函数 f(x)的图象关于点(1,0),(2,0)对称,所以 f(x)的周期为 2|2-1|=2,所以 f(x)与 f(x+2),f(x+4)的奇偶性相同,f(x+1)与 f(x+3)的奇偶性相同,所以 f(x),f(x+3),f(x+4)均为奇函数.故选 ABC.

答案 (1)B (2)ABC

【训练 2】 奇函数 f(x)的定义域为 R.若 f(x+2)为偶函数,且 f(1)=1,则 f(8)+f(9)=(A.-2 B.-1 C.0 D.1

解析 由 f(x+2) 是偶函数可得 f(-x+2) = f(x+2),

f(x)是奇函数得 f(-x+2) = -f(x-2),所以 f(x+2) = -f(x-2),f(x+4) = -f(x),f(x+8) = f(x). 故 f(x)是以 8 为周期的周期函数,所以 f(9) = f(8+1) = f(1) = 1.

又 f(x)是定义在 R 上的奇函数,所以 f(0) = 0,所以 f(8) = f(0) = 0,故 f(8) + f(9) = 1.答案: D

结论 3 函数的对称性

已知函数 f(x)是定义在 R 上的函数.

(1)若 f(a+x)=f(b-x)恒成立,则 y=f(x)的图象关于直线 $x=\frac{a+b}{2}$ 对称,特别地,若 f(a+x)=f(a-x)恒成立,则 y=f(x)的图象关于直线 x=a 对称.

(2)若函数 y = f(x)满足 f(a+x) + f(a-x) = 0,即 f(x) = -f(2a-x),则 f(x)的图象关于点(a, 0)对称. (3)若 f(a+x) + f(a-x) = 2b 恒成立,则 y = f(x)的图象关于点(a, b)对称.

【例 3】 (1)函数 y=f(x)对任意 $x \in \mathbb{R}$ 都有 f(x+2)=f(-x)成立,且函数 y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则 $f(2\ 016)+f(2\ 017)+f(2\ 018)$ 的值为______.

(2)(**多选题**)定义在 **R** 上的函数 f(x)满足 f(x) = 2 - f(2 - x), f(x)是偶函数,下列正确的是() A.f(x)的图象关于点(1, 1)对称 B.f(x)是周期为 4 的函数

C.若 f(x)满足对任意的 $x \in [0, 1]$,都有 $\frac{f(x_2) - f(x_1)}{x_1 - x_2} < 0$,则 f(x)在[-3, -2]上单调递增

D.若 f(x)在[1, 2]上的解析式为 $f(x) = \ln x + 1$,则 f(x)在[2, 3]上的解析式为 $f(x) = 1 - \ln(x - 2)$ 解析 (1)因为函数 y = f(x - 1)的图象关于点(1, 0)对称,所以 f(x)是 **R** 上的奇函数,

又 f(x+2) = -f(x), 所以 f(x+4) = -f(x+2) = f(x), 故 f(x)的周期为 4.

所以 $f(2\ 017) = f(504 \times 4 + 1) = f(1) = 4$,

所以 $f(2\ 016) + f(2\ 018) = -f(2\ 014) + f(2\ 014 + 4) = -f(2\ 014) + f(2\ 014) = 0$,

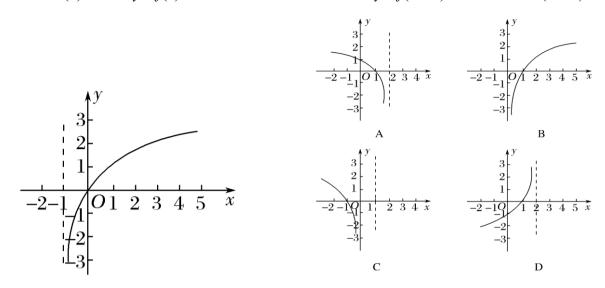
所以 f(2 016) + f(2 017) + f(2 018) = 4.

(2)根据题意, f(x)的图象关于点(1, 1)对称, A 正确; 又 f(x)的图象关于 y 轴对称, 所以 f(x) = f(-x), 则 2 - f(2-x) = f(-x), f(x) = 2 - f(x+2), 从而 f(x+2) = 2 - f(x+4), 所以 f(x) = f(x+4),

B 正确; 由 $\frac{f(x_2)-f(x_1)}{x_1-x_2}$ < 0 可知 f(x)在[0, 1]上单调递增,又 f(x)的图象关于点(1, 1)对称,

所以 f(x)在[1,2]上单调递增,因为 f(x)的周期为 4,所以 f(x)在[-3,-2]上单调递增,C 正确; 又 f(x) = f(-x), $x \in [-2,-1]$ 时, $-x \in [1,2]$,所以 $f(x) = f(-x) = \ln(-x) + 1$, $x \in [-2,-1]$, f(x)周期为 4,f(x) = f(x-4), $x \in [2,3]$ 时, $x-4 \in [-2,-1]$,所以 $f(x) = f(x-4) = \ln(4-x) + 1$, $x \in [2,3]$,D 错误 综上,正确的是 ABC.

【训练 3】 (1)若函数 y=f(x)的图象如左图所示,则函数 y=f(1-x)的图象大致为()



(2)若偶函数 y=f(x)的图象关于直线 x=2 对称,且 f(3)=3,则 f(-1)= .

解析 (1)作出 y = f(x)的图象关于 y 轴对称的图象,得到 y = f(-x)的图象,

将 y = f(-x)的图象向右平移 1 个单位,得 y = f(-(x-1)) = f(1-x)的图象.因此图象 A 满足.

(2) f(x)的图象关于直线 x = 2 对称,所以 f(x) = f(4 - x),f(-x) = f(4 + x),又 f(-x) = f(x),

所以f(x) = f(x + 4), 则f(-1) = f(3) = 3.

答案 (1)A (2)3

结论 4 两个经典不等式

- (1)对数形式: $x \ge 1 + \ln x(x \ge 0)$, 当且仅当 x = 1 时,等号成立.
- (2)指数形式: $e^x \ge x + 1(x \in \mathbb{R})$, 当且仅当 x = 0 时,等号成立.

进一步可得到一组不等式链: $e^x > x + 1 > x > 1 + \ln x(x > 0$, 且 $x \neq 1$).

【例4】 已知函数 $f(x)=x-1-a\ln x$.

(1)若 f(x)≥0,求 a 的值;

(2)证明: 对于任意正整数 n, $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\cdots\left(1+\frac{1}{2^n}\right)$ <e.

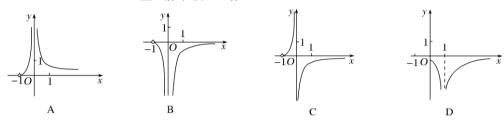
(1)解 f(x)的定义域为(0, + ∞), ①若 $a \le 0$,因为 $f(\frac{1}{2}) = -\frac{1}{2} + a \ln 2 < 0$,所以不满足题意.

②若 a>0,由 $f(x)=1-\frac{a}{x}=\frac{x-a}{x}$ 知,当 $x\in(0, a)$ 时,f(x)<0;当 $x\in(a, +\infty)$ 时,f(x)>0;

f(x)在(0, a)上单调递减,在 $(a, +\infty)$ 上单调递增,故 x=a 是 f(x)在 $(0, +\infty)$ 的唯一最小值点. 因为 f(1)=0,所以当且仅当 a=1 时, $f(x) \ge 0$,故 a=1.

(2)证明 由(1)知当 $x \in (1, +\infty)$ 时, $x - 1 - \ln x > 0$. 令 $x = 1 + \frac{1}{2^n}$,得 $\ln \left(1 + \frac{1}{2^n} \right) < \frac{1}{2^{n-2}}$ 从而 $\ln \left(1 + \frac{1}{2} \right) + \ln \left(1 + \frac{1}{2^2} \right) + \dots + \ln \left(1 + \frac{1}{2^n} \right) < \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n} < 1$. 故 $\left(1 + \frac{1}{2^2} \right) \cdots \left(1 + \frac{1}{2^n} \right) < e$.

【训练 4】 (1)已知函数 $f(x) = \frac{1}{\ln(x+1) - x}$,则 y = f(x)的图象大致为()



解析 由 $\begin{cases} x+1>0, \\ \ln (x+1) - x \neq 0, \end{cases}$ 得 $\{x|x>-1, \exists x \neq 0\}$, 所以排除选项 D.

当 x>0 时,由经典不等式 $x>1+\ln x(x>0)$,以 x+1 代替 x,得 $x>\ln(x+1)(x>-1$,且 $x\neq 0)$,

所以 ln(x+1) - x < 0(x > -1), 且 $x \ne 0$, 排除 A, C, 易知 B 正确. 答案 E

(2)已知函数 $f(x) = e^x$, $x \in \mathbb{R}$.证明: 曲线 y = f(x)与曲线 $y = \frac{1}{2}x^2 + x + 1$ 有唯一公共点.

由经典不等式 $e^x \ge x + 1$ 恒成立可知, $g'(x) \ge 0$ 恒成立,所以 g(x)在 R 上为增函数,且 g(0) = 0. 所以函数 g(x)有唯一零点,即两曲线有唯一公共点.

结论 5 三点共线的充要条件

设平面上三点 O, A, B 不共线,则平面上任意一点 P 与 A, B 共线的充要条件是存在实数 λ 与 μ , 使得 $\vec{OP} = \lambda \vec{OA} + \mu \vec{OB}$,且 $\lambda + \mu = 1$.特别地,当 P 为线段 AB 的中点时, $\vec{OP} = \frac{1}{2} \vec{OA} + \frac{1}{2} \vec{OB}$.

【例 5】 在 $\triangle ABC$ 中, $\overrightarrow{AE} = 2\overrightarrow{EB}$, $\overrightarrow{AF} = 3\overrightarrow{FC}$,连接 BF,CE,且 BF 与 CE 交于点 M, $\overrightarrow{AM} = x\overrightarrow{AE} + y\overrightarrow{AF}$,则 x - y 等于()

A.
$$-\frac{1}{12}$$
 B. $\frac{1}{12}$ C. $-\frac{1}{6}$ D. $\frac{1}{6}$

解析 因为 $\overrightarrow{AE} = 2\overrightarrow{EB}$, 所以 $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AB}$ 所以 $\overrightarrow{AM} = x\overrightarrow{AE} + y\overrightarrow{AF} = \frac{2}{3}x\overrightarrow{AB} + y\overrightarrow{AF}$.

由 B, M, F 三点共线得 $\frac{2}{3}x + y = 1.1$

因为 $\overrightarrow{AF} = 3\overrightarrow{FC}$, 所以 $\overrightarrow{AF} = \frac{3}{4}\overrightarrow{AC}$, 所以 $\overrightarrow{AM} = x\overrightarrow{AE} + y\overrightarrow{AF} = x\overrightarrow{AE} + \frac{3}{4}y\overrightarrow{AC}$.

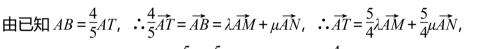
由 C, M, E 三点共线得 $x + \frac{3}{4}y = 1.2$

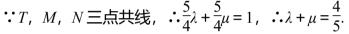
联立①②解得
$$\begin{cases} x = \frac{1}{2}, \\ y = \frac{2}{3}, \end{cases}$$
 所以 $x - y = \frac{1}{2} - \frac{2}{3} = -\frac{1}{6}.$ 答案 C

【训练 5】 在梯形 ABCD 中,已知 AB//CD,AB=2CD,M,N 分别为 CD,BC 的中点.若 \overrightarrow{AB}

 $=\lambda \overrightarrow{AM} + \mu \overrightarrow{AN}$,则 $\lambda + \mu =$ _____.

解析 如图,连接MN并延长交AB的延长线于T.





答案 $\frac{4}{5}$

结论 6 三角形"四心"向量形式的充要条件

设 O 为 $\triangle ABC$ 所在平面上一点,内角 A, B, C 所对的边分别为 a, b, c,则

- (1)O 为 $\triangle ABC$ 的外心 $\Leftrightarrow |\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}| = \frac{a}{2\sin A}$.
- (2)O 为△ABC 的重心⇔ $\vec{OA} + \vec{OB} + \vec{OC} = \mathbf{0}$.
- (3)O 为 $\triangle ABC$ 的垂心 $\Leftrightarrow \vec{OA} \cdot \vec{OB} = \vec{OB} \cdot \vec{OC} = \vec{OC} \cdot \vec{OA}$.
- (4)O 为△ABC 的内心⇔ $a\vec{OA}+b\vec{OB}+c\vec{OC}=\mathbf{0}$.

【例 6】 P 是 $\triangle ABC$ 所在平面内一点,若 $\overrightarrow{PA} \cdot \overrightarrow{PB} = \overrightarrow{PB} \cdot \overrightarrow{PC} = \overrightarrow{PC} \cdot \overrightarrow{PA}$,则 P 是 $\triangle ABC$ 的() A.外心 B.内心 C.重心 D.垂心

解析 由 $\vec{PA} \cdot \vec{PB} = \vec{PB} \cdot \vec{PC}$,可得 $\vec{PB} \cdot (\vec{PA} - \vec{PC}) = 0$,即 $\vec{PB} \cdot \vec{CA} = 0$, $\therefore \vec{PB} \perp \vec{CA}$,同理可证 $\vec{PC} \perp \vec{AB}$, $\vec{PA} \perp \vec{BC}$. $\therefore P \neq \triangle ABC$ 的垂心.

【训练 6】 O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点 P 满足 $\overrightarrow{OP} = \frac{\overrightarrow{OB} + \overrightarrow{OC}}{2}$

 $+\lambda \overrightarrow{AP}$, $\lambda \in \mathbf{R}$,则 P 点的轨迹一定经过 $\triangle ABC$ 的() A.外心 B.内心 C.重心 D.垂心

解析 设 BC 的中点为 M, 则 $\overrightarrow{OB} + \overrightarrow{OC}$ 2 $= \overrightarrow{OM}$, 则有 $\overrightarrow{OP} = \overrightarrow{OM} + \lambda \overrightarrow{AP}$, 即 $\overrightarrow{MP} = \lambda \overrightarrow{AP}$. $\therefore P$ 的轨迹一定通过 $\triangle ABC$ 的重心. 答案 C

结论 7 与等差数列相关的结论

已知等差数列 $\{a_n\}$,公差为d,前n项和为 S_n .

- (1)若 S_m , S_{2m} , S_{3m} 分别为等差数列 $\{a_n\}$ 的前 m 项、前 2m 项、前 3m 项的和,则 S_m , $S_{2m}-S_m$, $S_{3m}-S_{2m}$ 成等差数列.
- (2)若等差数列 $\{a_n\}$ 的项数为偶数 2m,公差为 d,所有奇数项之和为 $S_{\mathfrak{g}}$,偶数项之和为 $S_{\mathfrak{g}}$,则所有项之和 $S_{2m}=m(a_m+a_{m+1})$, $S_{\mathfrak{g}}-S_{\mathfrak{g}}=md$, $\frac{S_{\mathfrak{g}}}{S_{\mathfrak{g}}}=\frac{a_{m+1}}{a_m}$.
- (3)若等差数列 $\{a_n\}$ 的项数为奇数2m-1,所有奇数项之和为 $S_{\hat{a}}$,所有偶数项之和为 $S_{\mathbb{A}}$,则所有项之和 $S_{2m-1}=(2m-1)a_m$, $S_{\hat{a}}-S_{\mathbb{A}}=a_m$, $\frac{S_{\hat{a}}}{S_{\mathbb{A}}}=\frac{m}{m-1}$.

【例 7】 (1)设等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $S_{m-1}=-2$, $S_m=0$, $S_{m+1}=3$,则 m=() A.3 B.4 C.5 D.6

(2)等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 $a_{m-1}+a_{m+1}-a_m^2=0$, $S_{2m-1}=38$,则 m=

解析 (1):数列 $\{a_n\}$ 为等差数列,且前 n 项和为 S_n , :数列 $\left\{\frac{S_n}{n}\right\}$ 也为等差数列.

∴
$$\frac{S_{m-1}}{m-1} + \frac{S_{m+1}}{m+1} = \frac{2S_m}{m}$$
, $\mathbb{D} \frac{-2}{m-1} + \frac{3}{m+1} = 0$, 解得 $m = 5$.

经检验, m=5符合题意.

又
$$S_{2m-1} = \frac{(2m-1)(a_1 + a_{2m-1})}{2} = (2m-1)a_m = 38$$
,显然可得 $a_m \neq 0$,所以 $a_m = 2$.

代入上式可得 2m-1=19, 解得 m=10.

答案 (1)C (2)10

【训练 7】 (1)等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 S_{10} =20, S_{20} =50,则 S_{30} =_____.

(2)一个等差数列的前 12 项和为 354,前 12 项中偶数项的和与奇数项的和的比为 32:27,则数列的公差 d=_____.

解析
$$(1)(S_{20} - S_{10}) - S_{10} = (S_{30} - S_{20}) - (S_{20} - S_{10}), S_{30} = 3S_{20} - 3S_{10} = 3 \times 50 - 3 \times 20 = 90.$$

(2)设等差数列的前 12 项中奇数项和为 S_{δ} ,偶数项的和为 S_{δ} ,等差数列的公差为 d.

由已知条件,得
$$\begin{cases} S_{\widehat{\eth}} + S_{\mathbb{A}} = 354, \\ S_{\mathbb{A}} : S_{\widehat{\eth}} = 32 : 27, \end{cases}$$
解得 $\begin{cases} S_{\mathbb{A}} = 192, \\ S_{\widehat{\eth}} = 162. \end{cases}$ 又 $S_{\mathbb{A}} - S_{\widehat{\eth}} = 6d$,所以 $d = \frac{192 - 162}{6} = 5$.

结论 8 与等比数列相关的结论

已知等比数列 $\{a_n\}$, 公比为q, 前n 项和为 S_n .

- (1)数列 $\left\{\frac{1}{a_n}\right\}$ 也为等比数列,其公比为 $\frac{1}{q}$.
- (2)公比 $q \neq -1$ 或 q = -1 且 n 为奇数时, S_n , $S_{2n} S_n$, $S_{3n} S_{2n}$,…成等比数列 $(n \in \mathbb{N}^*)$.
- (3)若等比数列项数为 $2n(n \in \mathbb{N}^*)$,公比为 q,奇数项之和为 $S_{\mathfrak{g}}$,偶数项之和为 $S_{\mathfrak{g}}$, $S_{\mathfrak{g}} = qS_{\mathfrak{g}}$.
- (4)已知等比数列 $\{a_n\}$, 公比为q, 前n项和为 S_n .则 $S_{m+n}=S_m+q^mS_n(m,n\in \mathbb{N}^*)$.

【例 8】 (1)设等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $\frac{S_6}{S_3}$ =3,则 $\frac{S_9}{S_6}$ =()

A.2 $B.\frac{7}{3}$ $C.\frac{8}{3}$ D.3

解析 由 $\frac{S_6}{S_3}$ = 3, 得 S_6 = 3 S_3 且 $q \neq -1$, 因为 S_3 , S_6 - S_3 , S_9 - S_6 也为等比数列,所以(S_6 - S_3)²

 $=S_3(S_9-S_6)$, 则 $(2S_3)^2=S_3(S_9-3S_3)$.化简得 $S_9=7S_3$, 从而 $\frac{S_9}{S_6}=\frac{7S_3}{3S_3}=\frac{7}{3}$. 答案 B

- (2)已知等比数列 $\{a_n\}$ 的前n项和为 S_n ,且满足 $S_3 = \frac{7}{2}$, $S_6 = \frac{63}{2}$.
- ①求数列 $\{a_n\}$ 的通项公式; ②求 $\log_2 a_1 + \log_2 a_2 + \log_2 a_3 + \dots + \log_2 a_{25}$ 的值.

解 ①由 $S_3 = \frac{7}{2}$, $S_6 = \frac{63}{2}$,得 $S_6 = S_3 + q^3 S_3 = (1+q^3)S_3$, $\therefore q = 2.$ 又 $S_3 = a_1(1+q+q^2)$,得 $a_1 = \frac{1}{2}$. 故通项公式 $a_n = \frac{1}{2} \times 2^{n-1} = 2^{n-2}$.

②由①及题意可得 $\log_2 a_n = n - 2$,

所以 $\log_2 a_1 + \log_2 a_2 + \log_2 a_3 + \dots + \log_2 a_{25} = -1 + 0 + 1 + 2 + \dots + 23 = \frac{25 \times (-1 + 23)}{2} = 275.$

【训练 8】 已知 $\{a_n\}$ 是首项为 1 的等比数列, S_n 是 $\{a_n\}$ 的前 n 项和,且 $9S_3=S_6$,则数列 $\left\{\frac{1}{a_n}\right\}$ 的

前 5 项和为()

A.
$$\frac{15}{8}$$
或 5 B. $\frac{31}{16}$ 或 5 C. $\frac{31}{16}$ D. $\frac{15}{8}$

解析 设等比数列 $\{a_n\}$ 的公比为q, 易知 $S_3 \neq 0$. 则 $S_6 = S_3 + S_3 q^3 = 9S_3$, 所以 $q^3 = 8$, q = 2.

所以数列 $\left\{\frac{1}{a_n}\right\}$ 是首项为 1,公比为 $\frac{1}{2}$ 的等比数列,其前 5 项和为 $\frac{1-\left(\frac{1}{2}\right)^5}{1-\frac{1}{2}}=\frac{31}{16}$.

答案 C

结论9 多面体的外接球和内切球

(1)长方体的体对角线长 d 与共点的三条棱长 a, b, c 之间的关系为 $d^2 = a^2 + b^2 + c^2$; 若长方体外接球的半径为 R, 则有 $(2R)^2 = a^2 + b^2 + c^2$.

(2)棱长为 a 的正四面体内切球半径 $r=\frac{\sqrt{6}}{12}a$,外接球半径 $R=\frac{\sqrt{6}}{4}a$.

【例 9】 已知一个平放的各棱长为 4 的三棱锥内有一个小球 O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的 $\frac{7}{8}$ 时,小球与该三棱锥的各侧面均相切(与水面也相切),则小球的表面积等于()

 $A.\frac{7\pi}{6}$

 $B.\frac{4\pi}{3}$

 $C.\frac{2\pi}{3}$

 $D.\frac{\pi}{2}$

解析 当注入水的体积是该三棱锥体积的 $\frac{7}{8}$ 时,设水面上方的小三棱锥的棱长为x(各棱长相等). 依题意, $\left(\frac{x}{4}\right)^3 = \frac{1}{8}$,得x = 2,易得小三棱锥的高为 $\frac{2\sqrt{6}}{3}$.

设小球半径为 r,则 $\frac{1}{3}S_{\text{底面}} \cdot \frac{2\sqrt{6}}{3} = 4 \times \frac{1}{3}S_{\text{底面}} \cdot r(S_{\text{底面}})$ 为小三棱锥的底面积),得 $r = \frac{\sqrt{6}}{6}$. 故小球的表面积 $S = 4\pi r^2 = \frac{2\pi}{3}$. 答案 C

【训练 9】(1)已知直三棱柱的底面是等腰直角三角形,直角边长是 1,且其外接球的表面积是 16π,则该三棱柱的侧棱长为()

 $A.\sqrt{14}$

 $B.2\sqrt{3}$

 $C.4\sqrt{6}$

D.3

(2)已知球 O 的直径 PA=2r,B,C 是该球面上的两点,且 BC=PB=PC=r,三棱锥 P-ABC 的体积为 $\frac{32\sqrt{2}}{3}$,则球 O 的表面积为()

 $A.64\pi$

 $B.32\pi$

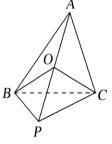
 $C.16\pi$

 $D.8\pi$

解析 (1)由于直三棱柱 $ABC - A_1B_1C_1$ 的底面 ABC 为等腰直角三角形.把直三棱柱 $ABC - A_1B_1C_1$

补成正四棱柱,则正四棱柱的体对角线是其外接球的直径,因为外接球的表面积是 16π,所以外接球半径为 2,因为直三棱柱的底面是等腰直角三角形,

斜边长 $\sqrt{2}$,所以该三棱柱的侧棱长为 $\sqrt{16-2}=\sqrt{14}$.



(2)如图,取 PA 的中点 O,则 O 为球心,连接 OB, OC,则几何体 O - BCP

是棱长为 r 的正四面体,所以 $V_{O-BCP} = \frac{\sqrt{2}}{12}r^3$,于是 $V_{P-ABC} = 2V_{O-BCP} = \frac{\sqrt{2}}{6}r^3$,令 $\frac{\sqrt{2}}{6}r^3 = \frac{32\sqrt{2}}{3}r^3$,

得 r = 4.从而 $S_{\text{球}} = 4\pi \times 4^2 = 64\pi$.

答案 (1)A (2)A

结论 10 焦点三角形的面积公式

(1)在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)中, F_1 , F_2 分别为左、右焦点,P为椭圆上一点,则 $\triangle PF_1F_2$ 的面积 $S_{\triangle PF1F2} = b^2 \cdot \tan \frac{\theta}{2}$,其中 $\theta = \angle F_1PF_2$.

(2)在双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)中, F_1 , F_2 分别为左、右焦点,P 为双曲线上一点,则 $\triangle PF_1F_2$ 的面积 $S \triangle PF_1F_2 = \frac{b^2}{\tan \frac{\theta}{2}}$,其中 $\theta = \angle F_1PF_2$.

【例 10】 F_1 , F_2 是椭圆 C_1 : $\frac{x^2}{4} + y^2 = 1$ 与双曲线 C_2 的公共焦点, A, B 分别是 C_1 , C_2 在第二、

四象限的公共点.若四边形 AF_1BF_2 为矩形,则 C_2 的离心率是()

 $A.\sqrt{2}$

 $C.\frac{3}{2}$

 $D.\frac{\sqrt{6}}{2}$

A P₂

解析: 设双曲线 C_2 的方程为 $\frac{x^2}{a_2^2} - \frac{y^2}{b_2^2} = 1$, 则 $a_2^2 + b_2^2 = c_2^2 = c_1^2 = 4 - 1 = 3$.

又四边形 AF_1BF_2 为矩形,所以 $\triangle AF_1F_2$ 的面积为 $b_1^2\tan 45^\circ = \frac{b_2^2}{\tan 45^\circ}$,即 $b_2^2 = b_1^2 = 1$.

所以
$$a_2^2 = c_2^2 - b_2^2 = 3 - 1 = 2$$
. 故双曲线的离心率 $e = \frac{c_2}{a_2} = \sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2}$.

答案 D

【训练 10】 已知 F_1 , F_2 是椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的两个焦点,P 为椭圆 C 上一点,且 \overrightarrow{PF}_1 上 \overrightarrow{PF}_2 .若 $\triangle PF_1F_2$ 的面积为 9,则 b = .

解析 在焦点三角形 PF_1F_2 中, $\overrightarrow{PF}_1 \perp \overrightarrow{PF}_2$,所以 $\angle F_1PF_2 = 90^\circ$,

故 $S\triangle PF_1F_2 = b^2\tan\frac{\angle F_1PF_2}{2} = b^2\tan 45^\circ = 9$,则 b = 3.

答案 3

结论 11 圆锥曲线的切线问题

(1)过圆 C: $(x-a)^2 + (y-b)^2 = R^2 \pm - \pm P(x_0, y_0)$ 的切线方程 $(x_0-a)(x-a) + (y_0-b)(y-b) = R^2$. (2)过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \pm - \pm P(x_0, y_0)$ 的切线方程为 $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.

(3)已知点 $M(x_0, y_0)$, 抛物线 $C: y^2 = 2px(p \neq 0)$ 和直线 $l: y_0y = p(x + x_0)$.

- ①当点 M 在抛物线 C 上时,直线 l 与抛物线 C 相切,其中 M 为切点,l 为切线.
- ②当点 M 在抛物线 C 外时,直线 l 与抛物线 C 相交,其中两交点与点 M 的连线分别是抛物线 的切线,即直线1为切点弦所在的直线.

【例 11】 已知抛物线 $C: x^2 = 4v$,直线 l: x - v - 2 = 0,设 P 为直线 l 上的点,过点 P 作抛物 线 C 的两条切线 PA, PB, 其中 A, B 为切点, 当点 $P(x_0, y_0)$ 为直线 l 上的定点时, 求直线 AB的方程.

联立方程得 $\begin{cases} x^2=4y, \\ x-y-2=0, \end{cases}$ 消去 y,整理得 $x^2-4x+8=0$, $\Delta=(-4)^2-4\times 8=-16<0$,故直 线 l 与抛物线 C 相离.

由结论知,P 在抛物线外,故切点弦 AB 所在的直线方程为 $x_0x=2(y+y_0)$,即 $y=\frac{1}{2}x_0x-y_0$.

【训练 11】 (1)过点(3, 1)作圆 $(x-1)^2+v^2=1$ 的两条切线,切点分别为 A, B,则直线 AB 的 方程为(

A.
$$2x+y-3=0$$
 B. $2x-y-3=0$ C. $4x-y-3=0$

$$B.2x-v-3=0$$

$$C.4x-y-3=0$$

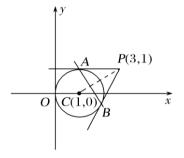
$$D.4x+y-3=0$$

(2)设椭圆 C: $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 点 $P(1, \frac{3}{2})$, 则椭圆 C 在点 P 处的切线方程为___

解析 (1)如图,圆心坐标为 C(1, 0),易知 A(1, 1).

$$\nabla k_{AB} \cdot k_{PC} = -1$$
, $\coprod k_{PC} = \frac{1-0}{3-1} = \frac{1}{2}$, $\therefore k_{AB} = -2$.

故直线 AB 的方程为 v-1=-2(x-1), 即 2x+v-3=0.



(2)由于点 $P(1, \frac{3}{2})$ 在椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 上,故切线方程为 $\frac{x}{4} + \frac{\frac{3}{2}y}{3} = 1$,即 x + 2y - 4 = 0.

答案 (1)A (2)x+2y-4=0

结论 12 过抛物线 $v^2 = 2px(p>0)$ 焦点的弦

设 AB 是过抛物线 $v^2=2px(p>0)$ 焦点 F 的弦,若 $A(x_A, v_A)$, $B(x_B, v_B)$,则

$$(1)x_A\cdot x_B = \frac{p^2}{4}.$$

$$(2)y_A \cdot y_B = -p^2.$$

(3) $|AB|=x_A+x_B+p=\frac{2p}{\sin^2\alpha}(\alpha$ 是直线 AB 的倾斜角).

【例 12】 过 $y^2=4x$ 焦点 F 的直线 l 与抛物线交于 A, B 两点,若|AF|=2|BF|,则|AB|等于()

A.4

$$B.\frac{9}{2}$$

C.5

D.6

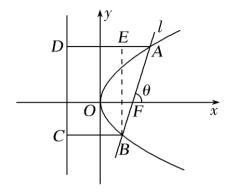
由对称性不妨设点 A 在 x 轴的上方, 如图设 A, B 在准线上的射影分别为 D, C, 作 解析

 $BE \perp AD$ 于 E, 设|BF| = m, 直线 l 的倾斜角为 θ , 则|AB| = 3m,

由抛物线的定义知|AD| = |AF| = 2m, |BC| = |BF| = m,

所以
$$\cos \theta = \frac{|AE|}{|AB|} = \frac{1}{3}$$
, $\sin^2 \theta = \frac{8}{9}$.

又 $y^2 = 4x$,知 2p = 4,故利用弦长公式 $|AB| = \frac{2p}{\sin^2\theta} = \frac{9}{2}$.



答案 B

【训练 12】 设 F 为抛物线 $C: y^2 = 3x$ 的焦点,过 F 且倾斜角为 30° 的直线交 C 于 A, B 两点,

O 为坐标原点,则 $\triangle OAB$ 的面积为(

$$A.\frac{3\sqrt{3}}{4}$$

B.
$$\frac{9\sqrt{3}}{8}$$

$$C.\frac{63}{32}$$

$$D.\frac{9}{4}$$

法一 由已知得焦点坐标为 $F\left(\frac{3}{4}, 0\right)$, 因此直线 AB 的方程为 $y = \frac{\sqrt{3}}{3}\left(x - \frac{3}{4}\right)$, 即 $4x - 4\sqrt{3}$

y - 3 = 0.与抛物线方程联立,化简得 $4y^2 - 12\sqrt{3}y - 9 = 0$,故 $|y_A - y_B| = \sqrt{(y_A + y_B)^2 - 4y_Ay_B} = 6$.

因此 $S_{\triangle OAB} = \frac{1}{2}|OF||y_A - y_B| = \frac{1}{2} \times \frac{3}{4} \times 6 = \frac{9}{4}$.

得
$$|AB| = \frac{2p}{\sin^2 \alpha} = \frac{3}{\sin^2 30^\circ} = 12$$

原点到直线 AB 的距离 $d = |OF| \cdot \sin 30^\circ = \frac{3}{8}$,故 $S_{\triangle AOB} = \frac{1}{2} |AB| \cdot d = \frac{1}{2} \times 12 \times \frac{3}{8} = \frac{9}{4}$.

答案 D