专题 6 经典的二阶递推

第一讲 二阶递推之方程组法 $a_{n+1} = pa_n + qa_{n-1}$

$$(a_1 = a, a_2 = b, n \ge 2)$$

1. 设 $a_{n+1} - \alpha a_n = \beta(a_n - \alpha a_{n-1})$ 与 $a_{n+1} = pa_n + qa_{n-1}$ 比较,得 $\alpha + \beta = p, \alpha \cdot \beta = -q$,可知:

 α , β 是方程 $x^2 - px - q = 0$ 的两根, 容易求得 α , β .

(I) $\mathbf{a} = \beta$ 时,数列 $\{a_{n+1} - \alpha a_n\}$ 是以 $a_2 - \alpha a_1$ 为首项, β 为公比的等比数列

同时满足数列 $\{a_{n+1}-\beta a_n\}$ 是以 $a_2-\beta a_1$ 为首项, α 为公比的等比数列

特例: 当p+q=1 时, $a_{n+1}-a_n=-qa_n+qa_{n-1}$, $\therefore \{a_{n+1}-a_n\}$ 是以b-a为首项,-q为公比的等比数列

$$\therefore a_{n+1} - a_n = (b-a)(-q)^{n-1}$$
,同时 $a_{n+1} + qa_n = a_n + qa_{n-1}$, $\therefore \{a_{n+1} + qa_n\}$ 是以 $b + qa$ 为常数的数列

故可以求出: $a_n = a + \frac{(b-a)\left[1-(-q)^{n-1}\right]}{1+q}$.

特征根解方程法: 令 $a_n = x \cdot \alpha^n + y \cdot \beta^n$, 再将 a_1, a_2 代入即可秒杀.

(II) 当
$$\alpha=\beta$$
时,设 $a_{n+1}-\alpha a_n=\alpha(a_n-\alpha a_{n-1})=\alpha^{n-1}(b-\alpha a)$,两边同除以 α^{n-1} 得: $\frac{a_{n+1}}{\alpha^{n-1}}-\frac{a_n}{\alpha^{n-2}}=b-\alpha a$ 数列 $\left\{\begin{array}{l} a_n\\ \alpha^{n-2} \end{array}\right\}$ 是以 αa 为首项, $b-\alpha a$ 为公差的等差数列, $\frac{a_n}{\alpha^{n-2}}=\alpha a+(n-1)(b-\alpha a)$

特征根解方程法: 令 $a_n = (xn + y)\alpha^n$, 再将 a_1, a_2 代入即可秒杀.

【例 1】(2019•潮州二模) 已知数列 $\{a_n\}$ 中, $a_1 = \frac{4}{3}$, $a_2 = \frac{13}{9}$,且 $3a_n + a_{n-2} = 4a_{n-1}(n \ge 3)$,则 $a_n = \underline{\hspace{1cm}}$

【解析】法一: 由 $3a_n + a_{n-2} = 4a_{n-1} (n \ge 3)$,可得 $a_n - a_{n-1} = \frac{1}{3} (a_{n-1} - a_{n-2}) (n \ge 3)$,在数列 $\{a_n\}$ 中,由 $a_1 = \frac{4}{3}$, $a_2 = \frac{13}{9}$,

可得
$$a_2 - a_1 = \frac{1}{9}$$
 , 由 $a_n - a_{n-1} = \frac{1}{3}(a_{n-1} - a_{n-2})(n \geqslant 3)$, 可得 $a_n - a_{n-1} \neq 0$, $\therefore \frac{a_n - a_{n-1}}{a_{n-1} - a_{n-2}} = \frac{1}{3}$, $(n \geqslant 3)$,

∴数列 $\{a_n - a_{n-1}\}$ 是等比数列, ∴ $a_n - a_{n-1} = \frac{1}{9} \times (\frac{1}{3})^{n-2} = (\frac{1}{3})^n$, $(n \geqslant 2)$,

由
$$a_2 - a_1 = \frac{1}{9}$$
 , $a_3 - a_2 = (\frac{1}{3})^3$, ..., $a_n - a_{n-1} = (\frac{1}{3})^n$, $(n \ge 2)$, 以上各式相加可得

法二:构造数列特征方程
$$3x^2+1=4x$$
 \Rightarrow $x_1=\frac{1}{3}, x_2=1$,故
$$\begin{cases} a_{n+1}-a_n=\frac{1}{3}(a_n-a_{n-1})\\ a_{n+1}-\frac{1}{3}a_n=a_n-\frac{1}{3}a_{n-1} \end{cases}$$
,数列 $\{a_{n+1}-a_n\}$ 是以

$$a_2 - a_1 = \frac{1}{9}$$
 为首项, $\frac{1}{3}$ 为公比的等比数列,同时数列 $\left\{ a_{n+1} - \frac{1}{3} a_n \right\}$ 是以 $a_2 - \frac{1}{3} a_1 = 1$ 为常数的数列,联立方程组

$$\begin{cases}
a_{n+1} - a_n = \left(\frac{1}{3}\right)^{n+1} \\
a_{n+1} - \frac{1}{3}a_n = 1
\end{cases} \therefore a_n = \frac{3}{2} - \frac{1}{2} \times \left(\frac{1}{3}\right)^n$$

法三: 暴力特征根法:
$$3x^2+1=4x \Rightarrow x_1=\frac{1}{3}, x_2=1$$
, $\therefore a_n=x\left(\frac{1}{3}\right)^n+y(1)^n=x\left(\frac{1}{3}\right)^n+y$, 代入 $a_1=\frac{4}{3}, a_2=\frac{13}{9}$ 得:

$$x = -\frac{1}{2}, y = \frac{3}{2}, \quad \therefore a_n = \frac{3}{2} - \frac{1}{2} \times (\frac{1}{3})^n.$$

【例 2】已知数列 $\{a_n\}$ 是首项为 $a_1=1$, $a_2=4$,且 $a_{n+2}=5a_{n+1}-6a_n$,求: $\{a_n\}$ 通项公式.

【解析】法一:由
$$a_{n+2}=5a_{n+1}-6a_n$$
,得
$$\begin{cases} a_{n+2}-2a_{n+1}=3(a_{n+1}-a_n)\\ a_{n+2}-3a_{n+1}=2(a_{n+1}-a_n) \end{cases}$$
,所以
$$\begin{cases} a_{n+1}-2a_n=3(a_n-a_{n-1})\\ a_{n+1}-3a_n=2(a_n-a_{n-1}) \end{cases}$$
由 $a_2-2a_1=2$,
$$a_2-3a_1=1$$
,得
$$\begin{cases} a_{n+1}-2a_n=2\times 3^{n-1}\\ a_{n+1}-3a_n=2^{n-1} \end{cases}$$
两 式联立得 $a_n=2\times 3^{n-1}-2^{n-1}$.

法二: 暴力特征根法: $x^2 = 5x - 6 \Rightarrow x_1 = 2, x_2 = 3$, $\therefore a_n = x \cdot 2^n + y \cdot 3^n$, 代入 $a_1 = 1, a_2 = 4$ 得: $x = -\frac{1}{2}, y = \frac{2}{3}$, $\therefore a_n = 2 \times 3^{n-1} - 2^{n-1}$.

【例 3】设 p,q 为实数, α , β 是方程 $x^2 - px + q = 0$ 的两根,数列 $\{a_n\}$ 是首项为 $a_1 = p$, $a_2 = p^2 - q$,

 $a_{n+2} = pa_{n+1} - qa_n.$

- (1) 证明: $\alpha + \beta = p, \alpha \cdot \beta = q$;
- (2) 求 $\{a_n\}$ 通项公式;
- (3) $p=1, q=\frac{1}{4}$, 求 $\{a_n\}$ 的前n项和 S_n .

【解析】(1) α , β 是方程 $x^2 - px + q = 0$ 的两根,所以 $(x - \alpha)(x - \beta) = x^2 - px + q$,

$$x^{2} - (\alpha + \beta)x + \alpha \cdot \beta = x^{2} - px + q,$$

比较系数得 $\alpha + \beta = p$, $\alpha \cdot \beta = q$.

(2) 因为 $a_n = pa_{n-1} - qa_{n-2}$, 且 $\alpha + \beta = p$, $\alpha \cdot \beta = q$, 所以 $a_{n+1} - \alpha a_n = \beta(a_n - \alpha a_{n-1})$ ①.

同理
$$a_{n+1} - \beta a_n = \alpha (a_n - \alpha a_{n-1})$$
 ② 又因为 $a_2 - \alpha a_1 = p^2 - q - \alpha p = p(p-\alpha) - q = (\alpha + \beta)[(\alpha + \beta) - \alpha] - q = p(p-\alpha)$

 $(\alpha+\beta)\cdot\beta-\alpha\cdot\beta=\beta^2$,由式①的数列 $\{a_{n+1}-\alpha a_n\}$ 是以 $a_2-\alpha a_1=\beta^2$ 为首项、以 β 为公比的等比数列.故

$$a_{n+1}-\alpha a_n=\beta^2\cdot\beta^{n-1}=\beta^{n+1}$$
 ③. 由式②的数列 $\{a_{n+1}-\beta a_n\}$ 是以 $a_2-\beta a_1=\alpha^2$ 为首项、以 α 为公比 的等比数

列. 故 $a_{n+1} - \beta a_n = \alpha^2 \cdot \alpha^{n-1} = \alpha^{n+1}$ ④. 联立③④得方程组,消去 a_{n+1} ,的 $(\alpha - \beta) a_n = \alpha^{n+1} - \beta^{n+1}$,故 $a_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} \ .$

(3) 因为
$$p=1$$
, $q=\frac{1}{4}$,所以 $\alpha=\beta=\frac{1}{2}$, $a_{n+2}=a_{n+1}-\frac{1}{4}a_n\Rightarrow a_{n+2}-\frac{1}{2}a_{n+1}=\frac{1}{2}\left(a_{n+1}-\frac{1}{2}a_n\right)$,故数列 $\left\{a_{n+1}-\frac{1}{2}a_n\right\}$

是以 $a_2 - \frac{1}{2}a_1 = \frac{1}{4}$ 为首项, $\frac{1}{2}$ 为公比的等比数列,即 $a_{n+1} - \frac{1}{2}a_n = \left(\frac{1}{2}\right)^{n+1}$, $\therefore a_{n+1} \cdot 2^{n+1} - a_n \cdot 2^n = 1$ $\therefore \left\{a_n \cdot 2^n\right\}$ 是

以 $2a_1 = 2$ 为首项, 1 为公差的等差数列, $\therefore a_n \cdot 2^n = n+1$, $a_n = (n+1)(\frac{1}{2})^n = \frac{n+1}{2^n}$.

$$S_n = 1 + \frac{3}{2^2} + \frac{4}{2^3} + \dots + \frac{n+1}{2^n} \qquad \text{(5)} \ \frac{1}{2} S_n = \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} + \frac{n+1}{2^{n+1}} \qquad \text{(6)} \ , \ \text{(5)} - \text{(6)} \ \text{(4)}$$

$$\frac{1}{2}S_n = 1 + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} - \frac{n+1}{2^{n+1}} = \frac{1}{2} + \frac{\frac{1}{2}(1 - \frac{1}{2^n})}{1 - \frac{1}{2}} - \frac{n+1}{2^{n+1}} = \frac{1}{2} + 1 - \frac{1}{2^n} - \frac{n+1}{2^{n+1}} = \frac{3}{2} - \frac{n+3}{2^{n+1}}. \quad \text{if } S_n = 3 - \frac{n+3}{2^n}.$$

此题完全按照高考给分标准作答,暴力特征根法留给读者朋友们享受!

第二讲 斐波那契数列

定义: 一个数列,前两项都为 1,从第三项起,每一项都是前两项之和,那么这个数列称为斐波那契数列,又称黄金分割数列;表达式 $F_0=1,F_1=1,F_n=F_{n-1}+F_{n-2}\;(n\in N^+)$

通项公式:
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$
 (又叫"比内公式",是用无理数表示有理数的一个范例)

比较有趣的是:一个完全是自然数的数列,通项公式竟然是用无理数表示的.

证明:线性递推数列的特征方程为: $x^2 = x + 1$, 解得: $x_1 = \frac{1 + \sqrt{5}}{2}$, $x_2 = \frac{1 - \sqrt{5}}{2}$ 则 $F_n = c_1 x_1^n + c_2 x_2^n$

斐波那契数列的一些性质:

求和问题: ① $S_n = a_{n+2} - 1$; ② $a_1 + a_3 + a_5 + \cdots + a_{2n-1} = a_{2n}$; ③ $a_2 + a_4 + a_6 + \cdots + a_{2n} = a_{2n+1} - 1$.

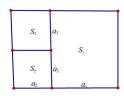
证 明 : ① $a_{n+2} = S_{n+2} - S_{n+1} = (a_{n+2} - a_{n+1}) + (a_{n+1} - a_n) + \dots + (a_2 - a_1) + a_1 = a_n + a_{n-1} + \dots + a_1 + a_1 = S_n + 1$, 故 $S_n = a_{n+2} - 1$, 此证明方法也是错位相减的一种特例.

② $a_1 + a_3 + \dots + a_{2n-1} = a_1 + (a_1 + a_2) + (a_3 + a_4) + \dots + (a_{2n-3} + a_{2n-2}) = a_1 + S_{2n-2} = a_{2n}$,此证明过程也需要利用①的结论.

$$(3) a_2 + a_4 + \dots + a_{2n} = a_1 + (a_2 + a_3) + (a_4 + a_5) + \dots + (a_{2n-2} + a_{2n-1}) = S_{2n-1} = a_{2n+1} - 1.$$

这三个式子用数学归纳法证明也非常简单,无需强化记忆,每次列出前几项比划一下,考试中如果出现需要这些结论的,拿出前几项及时推导即可.

平方和问题: $a_1^2 + a_2^2 + \cdots + a_n^2 = a_n a_{n+1}$ (根据面积公式推导,如下图)



构造正方形来设计面积, $a_1^2 + a_2^2 + a_3^2 = S_1 + S_2 + S_3 = (a_1 + a_2)(a_2 + a_3) = a_3 a_4$,以此类推,也可以用数学归纳法证明,知道一个大致的方向即可.

製项问题:
$$\frac{1}{a_1a_3} + \frac{1}{a_2a_4} + \dots + \frac{1}{a_{2n-3}a_{2n-1}} + \frac{1}{a_{2n-2}a_{2n}} = \frac{1}{a_2} \left(\frac{1}{a_1} - \frac{1}{a_3} \right) + \frac{1}{a_3} \left(\frac{1}{a_2} - \frac{1}{a_4} \right) + \dots + \frac{1}{a_{2n-2}} \left(\frac{1}{a_{2n-3}} - \frac{1}{a_{2n-1}} \right) + \frac{1}{a_{2n-1}} \left(\frac{1}{a_{2n-2}} - \frac{1}{a_{2n-1}} \right) = \frac{1}{a_1a_2} - \frac{1}{a_{2n-1}a_{2n}}.$$

注意: 如果是斐波那契数列的部分项求和也可以,比如 $\frac{p}{a_m a_{m+2}} + \frac{p}{a_{m+1} a_{m+3}} + \cdots + \frac{p}{a_{m+n-2} a_{m+n}} = \frac{p}{a_{m+1}} \left(\frac{1}{a_m} - \frac{1}{a_{m+n}} \right)$ 前提就是必须隔项,否则无法裂项相消.

【例 4】已知数列
$$\{a_n\}$$
 满足: $a_1 = \frac{1}{3}$, $a_2 = \frac{1}{3}$, $a_{n+1} = a_n + a_{n-1} (n \in N^*, n \ge 2)$, 则 $\frac{1}{a_1 a_3} + \frac{1}{a_2 a_4} + \frac{1}{a_3 a_5} + \dots + \frac{1}{a_{2019} a_{2021}}$

的整数部分为()

A. 6

B. 7

C = 8

D 9

【解析】
$$\frac{1}{a_3} \left(\frac{1}{a_2} - \frac{1}{a_4} \right) + \dots + \frac{1}{a_{2019}} \left(\frac{1}{a_{2018}} - \frac{1}{a_{2020}} \right) + \frac{1}{a_{2020}} \left(\frac{1}{a_{2019}} - \frac{1}{a_{2021}} \right) = \frac{1}{a_1 a_2} - \frac{1}{a_{2020}} \frac{1}{a_{2021}} = 9 - \frac{1}{a_{2020}} \frac{1}{a_{2021}} < 9$$
, 而整

数部分为8, 故选 C.

【例 5】斐波那契数列中,若 $a_1 = a_2 = 1$, $a_{n+2} = a_{n+1} + a_n (n \in N^*)$, S_n 为斐波那契数列的前 n 项和,则下列式子中成立的是(

A.
$$S_{2019} = a_{2020} + 1$$

B.
$$S_{2019} = a_{2021}$$

C.
$$a_1 + a_3 + \cdots + a_{2019} = a_{2021}$$

D.
$$a_2 + a_4 + \cdots + a_{2018} = a_{2019} - 1$$

【解析】根据秘籍的公式可知选 D.

第三讲 二阶构造的周期数列

若数列 $\{a_n\}$ 满足 $a_{n+2}=a_{n+1}-a_n(n\in N^*)$,或者 $a_n=\frac{a_{n-1}}{a_{n-2}}(n\geqslant 3)$,则数列 $\{a_n\}$ 是周期为 6 的数列.

证明:
$$a_{n+6} = a_{n+5} - a_{n+4} = a_{n+4} - a_{n+3} - a_{n+4} = -a_{n+2} + a_{n+1} = -a_{n+1} + a_n + a_{n+1} = a_n$$
.

【例 6】(2018•保定期末)已知数列 $\{a_n\}$ 中, $a_1=1$, $a_2=3$, $a_{n+2}=a_{n+1}-a_n(n\in N^*)$ 则 $\{a_n\}$ 前 100 项之和为(

A. 5

B. 20

C. 300

D. 652

【解析】
$$:: a_1 = 1$$
 , $a_2 = 3$, $a_{n+2} = a_{n+1} - a_n (n \in N^*)$, $:: a_3 = 3 - 1 = 2$, $a_4 = 2 - 3 = -1$, $a_5 = -1 - 2 = -3$, $a_6 = -3 + 1 = -2$, $a_7 = -2 + 3 = 1$, $a_8 = 1 + 2 = 3$, $a_9 = 3 - 1 = 2$, ... $:: a_n$ 是周期为 6 的周期函数, $:: 100 = 16 \times 6 + 4$, $:: S_{100} = 16 \times (1 + 3 + 2 - 1 - 3 - 2) + (1 + 3 + 2 - 1) = 5$. 故选 A .

第四讲 二阶递推式: $a_{n+1} = pa_n + qa_{n-1} + A(a_1 = a, a_2 = b, n \ge 2)$

(1)
$$\stackrel{\text{def}}{=} p + q = 1 \text{ Bd}, \quad a_{n+1} - a_n = -q(a_n - a_{n-1}) + A, \quad \therefore a_{n+1} - a_n + \frac{A}{-q - 1} = \left(a_{n+1} - a_n + \frac{A}{-q - 1}\right)(-q),$$

(2) 当
$$p + q \neq 1$$
 时,设 $a_{n+1} - \alpha a_n = \beta(a_n - \alpha a_{n-1}) + A$ 与 $a_{n+1} = p a_n + q a_{n-1} + A$ 比较,得 $\alpha + \beta = p, \alpha \cdot \beta = -q$,可知, α , β 是方程 $x^2 - p x - q = 0$ 的两根,容易求得 α , β .

(I) 当
$$\alpha \neq \beta$$
时,数列 $\left\{a_{n+1} - \alpha a_n + \frac{A}{\beta - 1}\right\}$ 是以 $b - \alpha a + \frac{A}{\beta - 1}$ 为首项, β 为公比的等比数列同时满足数列 $\left\{a_{n+1} - \beta a_n + \frac{A}{\alpha - 1}\right\}$ 是以 $b - \beta a + \frac{A}{\alpha - 1}$ 为首项, α 为公比的等比数列

则有
$$\begin{cases} a_{n+1}-\alpha a_n+\frac{A}{\beta-1}=\left(b-\alpha a+\frac{A}{\beta-1}\right)\!\beta^{n-1}\\ a_{n+1}-\beta a_n+\frac{A}{\alpha-1}=\left(b-\beta a+\frac{A}{\alpha-1}\right)\!\alpha^{n-1} \end{cases}$$
 两式联立,消去 a_{n+1} 得 a_n .

暴力特征根解法: $a_n = x \cdot \alpha^n + y \cdot \beta^n + z$, 代入 a_1 , a_2 , a_3 即可解得.

(II) 当
$$\alpha = \beta$$
时,设 $a_{n+1} - \alpha a_n + \frac{A}{\alpha - 1} = \alpha \left(a_n - \alpha a_{n-1} + \frac{A}{\alpha - 1} \right) \Rightarrow a_{n+1} - \alpha a_n + \frac{A}{\alpha - 1} = \alpha^{n-1} \left(b - \alpha a + \frac{A}{\alpha - 1} \right)$,

数列 $\left\{a_{n+1}-\alpha a_n+rac{A}{\alpha-1}
ight\}$ 是以 $b-\alpha a+rac{A}{\alpha-1}$ 为首项, α 为公比的等比数列 , 将上式子两边同除以 α^{n-1} 得:

$$\frac{a_{n+1}}{\alpha^{n-1}} - \frac{a_n}{\alpha^{n-2}} + \frac{A}{(\alpha-1)\alpha^{n-1}} = b - \alpha a + \frac{A}{\alpha-1}$$
, 令 $\frac{a_{n+1}+x}{\alpha^{n-1}} - \frac{a_n+x}{\alpha^{n-2}} = b - \alpha a + \frac{A}{\alpha-1}$ 通过以上两式子比较得:

$$\frac{x}{\alpha^{n-1}} - \frac{x}{\alpha^{n-2}} = \frac{A}{(\alpha - 1)\alpha^{n-1}} \Rightarrow x = -\frac{A}{(\alpha - 1)^2}, \quad 数列 \left\{ \frac{a_n - \frac{A}{(\alpha - 1)^2}}{\alpha^{n-2}} \right\}$$
是以 $\left(a - \frac{A}{(\alpha - 1)^2} \right) a$ 为首项, $b - \alpha a + \frac{A}{\alpha - 1}$ 为公

差的等差数列.

暴力特征根法: $a_n = (xn + y)\alpha^n + z$, 代入 a_1 , a_2 , a_3 即可解得.

【例 7】已知数列 $\{a_n\}$ 是首项为 $a_1=1$, $a_2=5$,且 $a_{n+2}=2a_{n+1}-a_n+8$,求: $\{a_n\}$ 通项公式.

【解析】 $a_{n+2}-a_{n+1}=a_{n+1}-a_n+8$, $a_2-a_1=4$, 所以数列 $\{a_{n+1}-a_n\}$ 是以4为首项,8为公差的等差数列.

所以
$$a_{n+1}-a_n=8n-4$$
 ,则 $a_n-a_{n-1}=8n-12$, $a_{n-1}-a_{n-2}=8n-20$ …… $a_2-a_1=4$

以上相加得
$$a_n - a_1 = \frac{4 + 8n - 12}{2}(n - 1) = 4(n - 1)^2$$
,所以 $a_n = 4(n - 1)^2 + 1$.

【例 8】已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=8$, $a_{n+1}=6a_n-9a_{n-1}+4(n\geq 2)$

- (1) 是否存在实数 p,r,使数列 $\{a_{n+1}+pa_n+r\}$ 为等比数列? 若存在,求出实数 p,r 若不存在,说明理由;
- (2) 是否存在实数 λ ,使数列 $\left\{\frac{a_n+\lambda}{3^{n-2}}\right\}$ 为等差数列?若存在,求出实数 λ 和 $\left\{a_n\right\}$ 的通项公式,若不存在,说明理由.

【解析】(1) 由 $a_{n+1}=6a_n-9a_{n-1}+4$ 得 $a_{n+1}-3a_n+2=3(a_n-3a_{n-1}+2)$,又 $a_2-3a_1+2=7$,所以当 p=-3, r=2 时,数列 $\{a_{n+1}-3a_n+2\}$ 是以 7 为首项, 3 为公比的等比数列, 所以 $a_{n+1}-3a_n+2=7\times 3^{n-1}$

(2) 由(1)得 $a_{n+1}-1=3(a_n-1)+7\times 3^{n-1}$,所以 $\frac{a_{n+1}-1}{3^{n-1}}=\frac{3(a_n-1)}{3^{n-1}}+7$,即 $\frac{a_{n+1}-1}{3^{n-1}}=\frac{a_n-1}{3^{n-2}}+7$,又 $\frac{a_1-1}{3^{-1}}=0$ 所以当 $\lambda=-1$ 时,数列 $\{\frac{a_n-1}{3^{n-2}}\}$ 是以 0 为首项,7 为公差的等差数列.所以 $\frac{a_n-1}{3^{n-2}}=7(n-1)$,即 $a_n=7(n-1)\cdot 3^{n-2}+1$.

【例 9】已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=4$, $a_{n+1}=3a_n+10a_{n-1}+1(n\geq 2)$, ,求 $\{a_n\}$ 通项公式.

【解析】法一: 令
$$x^2-3x-10=0$$
 ,解得 $x=-2$ 或 $x=5$,所以有
$$\begin{cases} a_{n+1}+2a_n+\frac{1}{4}=5(a_n+2a_{n-1}+\frac{1}{4})\\ a_{n+1}-5a_n-\frac{1}{3}=-2(a_n-5a_{n-1}-\frac{1}{3}) \end{cases}$$

所以数列 $\{a_{n+1}+2a_n+\frac{1}{4}\}$ 是 $a_2+2a_1+\frac{1}{4}=\frac{25}{4}$ 为首项,5 为公比的等比数列,

$$\mathbb{P} \mid a_{n+1} + 2a_n + \frac{1}{4} = \frac{25}{4} \times 5^{n-1}$$

数列 $\{a_{n+1}-5a_n-\frac{1}{3}\}$ 是 $a_2-5a_1-\frac{1}{3}=-\frac{4}{3}$ 为首项, -2 为公比的等比数列.

$$a_{n+1} - 5a_n - \frac{1}{3} = -\frac{4}{3} \times (-2)^{n-1}$$

①-②得
$$7a_n + \frac{7}{12} = \frac{5^{n+1}}{4} + \frac{(-2)^{n+1}}{3}$$
, 化简得 $a_n = \frac{3 \cdot 5^{n+1} + 4 \cdot (-2)^{n+1} - 7}{84}$.

法二: 暴力特征根法: 令 $x^2-3x-10=0$, 解得x=-2或x=5, 故令 $a_n=x\cdot (-2)^n+y\cdot 5^n+z$, 代入 a_1 , a_2 ,

$$a_{3}, \ \ \mathcal{F} \begin{cases} -2x+5y+z=1\\ 4x+25y+z=4\\ -8x+125y+z=23 \end{cases} \ \ \mathcal{F} \ \ \mathcal{F} = \frac{-2}{21}\\ y=\frac{5}{28} \quad \therefore a_{n} = \frac{3\cdot 5^{n+1}+4\cdot (-2)^{n+1}-7}{84}.$$

达标训练

- 1. (2019•浙江期中) 若数列 $\{a_n\}$ 满足 $a_1 = l$, $a_2 = 2$, $a_n a_{n-2} = a_{n-1} (n \ge 3)$, 记数列 $\{a_n\}$ 的前 n 项积为 T_n , 则下列说法错误的是(
 - $A. T_n$ 无最大值
- B. a_n 有最大值
- C. $T_{2019} = 4$
- D. $a_{2019} = 2$
- 2. (2018•云阳期末) 已知数列 $\{a_n\}$ 满足: $a_1 = \frac{1}{2}$, $a_2 = 1$, $a_{n+1} = a_n + a_{n-1} (n \in N^*, n \ge 2)$, 则

$$\frac{1}{a_1a_3} + \frac{1}{a_2a_4} + \frac{1}{a_3a_5} + \ldots + \frac{1}{a_{2018}a_{2020}}$$
的整数部分为()

A. 0

B. 1

C = 2

- D. 3
- 3. $(2018 \bullet 济宁 一模)$ 设数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$,且 $2na_n=(n-1)a_{n-1}+(n+1)a_{n+1}(n\geqslant 2$ 且 $n\in N^*$) ,则 $a_{18}=(n-1)a_{n-1}+(n-1)a_{n-1}+(n-1)a_{n-1}$
 - A. $\frac{25}{9}$
- B. $\frac{26}{9}$

C. 3

D. $\frac{28}{9}$

4. $(2019$ •双台子期末)已知数列 $\{a_n\}$ 满足 $a_1=0$, $a_{n+2}=a_n+a_{n+1}$,则 $a_2+a_4+\ldots\ldots+a_{2n}=$ (
A. 0	B. a_n	C. a_{2n+2}	D. a_{2n+1}
5. (2018•蚌埠三模) 数	列 $\{a_n\}$ 的前 n 项和记为 S	a_{n} , $a_{n+1} = a_n - a_{n-1} (n \in N^*)$, $n\geqslant 2$), $a_1=2018$, $a_2=2017$,则 $S_{100}=$
()			
A. 2016	B. 2017	C. 2018	D. 2019
6. $(2019$ •济南模拟)在数列 $\{a_n\}$ 中,若 $a_1=a_2=2$, $a_{n+2}=a_{n+1}+2a_n(n\in N^*)$,则 $\log_2(a_{2019}+a_{2020})=$			
7. (2016•南阳期中)裴波那契数列的通项公式为 $a_n = \frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n]$,又称为"比内公式",是用无理数表示有理数的一个范例,由此, $a_5 = ($)			
A. 3	B. 5	C. 8	D. 13
8. (2019•广东模拟) 厉	历史上数列的发展,折射;	出许多有价值的数学思想	思方法,对时代的进步起了重要的作用,
比如意大利数学家列昂纳多•斐波那契以兔子繁殖为例,引人"兔子数列":即1,1,2,3,5,8,13,21,34,			
55, 89, 144, 233, 即 F (1) = F (2) = 1, $F(n) = F(n-1) + F(n-2)(n \ge 3$, $n \in N^*$). 此数列在现代物			
理、准晶体结构及化学等领域有着广泛的应用,若此数列被 4 整除后的余数构成一个新的数列 $\{b_n\}$,又记数列			
$\{c_n\}$ 满足 $c_1=b_1$, $c_2=b_2$, $c_n=b_n-b_{n-1} (n\geqslant 3, n\in N^*)$,则 $c_1+c_2+c_3+\ldots+c_{2019}$ 的值为			
9. (2019•唐山二模)各项均为正数的数列 $\{a_n\}$ 满足 $a_1=1$, $a_n \bullet a_{n+2}=3a_{n+1} (n \in N^*)$,则 $a_5 \bullet a_{2019}=$			
10. (2019•内江一模)设数列 $\{a_n\}$ 满足 a_1	$=1$, $a_2=4$, $a_3=9$,	$a_n = a_{n-1} + a_{n-2} - a_{n-3} (n \in N^*, n \geqslant 4)$, \square
$a_{2018} = $			
11. (2019•通州期中)已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=2$, $a_{n+1}+\frac{n-1}{n+1}a_{n-1}=\frac{2n}{n+1}a_n(n\geqslant 2 且 n\in N^*)$,则满足不			
等式 $a_{n+1} - a_n > 0.02$ 的正整数 n 的最大值为			
12. (2019•赤峰模拟) 若数列 $\{a_n\}$ 满足 $a_1 = -1, a_2 = -\frac{1}{2}, 2a_{n+1} = 4a_n - 2a_{n-1} + 3(n \ge 2)$,则 na_n 的最小值为			
13. (2018•太原期末)已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=2$, $a_{n+2}=2a_{n+1}+3a_n+2(n\in N^*)$,则数列 $\{a_n\}$ 的通项公			
式 $a_n = \underline{}$. 14. 已知数列 $\{a_n\}$ 中, $a_1 = 1$, $a_2 = 4$,且各项均满足 $a_{n+2} = a_{n+1} + 2a_n$,求数列 $\{a_n\}$ 的通项公式.			
15. 已知数列 $\{a_n\}$ 中, $a_1 = 1$, $a_2 = 2$, $a_{n+2} = \frac{2}{3}a_{n+1} + \frac{1}{3}a_n$, 求 a_n .			
3 3			
16. (2019•浙江模拟) 已知数列 $\{a_n\}$ 中, $a_1 = a(a \neq 1 \perp 1 a \neq -3)$, $a_2 = 3$, $a_n = 2a_{n-1} + 3a_{n-2}(n \geqslant 3)$.			
(1) 求 $\{a_{n+1} + a_n\}$ 和 $\{a_{n+1} - 3a_n\}$ 的通项公式;			
(2) 若数列 $\{a_n\}$ 单调递增,求 a 的取值范围. 17. 已知数列 $\{a_n\}$ 是首项为 $a_1=a_2=2$,且 $a_{n+2}=a_{n+1}+2a_n$,			
17.			
(2) 当 $n \ge 2$ 时,求证: $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < 3$;			
(3) 若函数 $f(x)$ 满足	f(1) = 2, $f(n+1) = [f(n)]$	$]^2 + f(n), n \in N^*, \Re i$	$\overline{\mathbb{H}}: \sum_{k=1}^{n} \frac{1}{f(k)+1} < \frac{1}{2}.$
18. 已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_2=7$, $a_{n+1}=10a_n-21a_{n-1}+6(n\geq 2)$, ,求 $\{a_n\}$ 通项公式			
19. 已知 $\{a_n\}$ 满足 $a_1=1$, $a_2=-2$, $a_{n+1}=5a_n-6a_{n-1}+2^{n+1}$,			
(1) 试求实数 p,q , 使数列 $\{a_{n+1} + pa_n + q2^{n+1}\}$ 为等比数列;			
(2) 是否存在实数 λ , 说明理由.	使数列 $\left\{ \frac{a_{n+1} + \lambda a_n}{2^{n+1}} \right\}$ 为公	等差数列?若存在,求出	出实数 λ 和 $\{a_n\}$ 的通项公式,若不存在,

- 20. (2018•江苏期中)已知数列 $\{a_n\}$ 中, $a_1=1$, $a_2=a$,且 $a_{n+1}=k(a_n+a_{n+2})$ 对任意正整数 n 都成立,数列 $\{a_n\}$ 的前 n 项和为 S_n .
- (1) 若 $k = \frac{1}{2}$, 且 $S_{18} = 171$, 求a;
- (2) 是否存在实数 k,使数列 $\{a_n\}$ 是等比数列,且公比不为 1,且任意相邻三项 a_m , a_{m+1} , a_{m+2} 按某顺序排列后成等差数列,若存在,求出所有 k 的值;若不存在,请说明理由;
- (3) 若 $k = -\frac{1}{2}$, 求 S_n . (用a, n表示).