专题 3 对数切线放缩

第一讲 由 $\ln x \le x - 1$ (也可以记为 $\ln ex \le x$, 切点为(1,0)) 引起的放缩

最常见的就是 $\ln(x+1 \le)x$,由 $\ln x \le x-1$ 向左平移一个单位来理解,或者将 $e^x \ge x+1$ 两边取对数而来.

- ① $\ln x \le \frac{x}{e}$. (用 $\frac{x}{e}$ 替换 x ,切点横坐标是 x = e),表示过原点与 $f(x) = \ln x$ 的切线为 $y = \frac{x}{e}$.
- ② $\ln x \ge 1 \frac{1}{x}$. (用 $\frac{1}{x}$ 替换 x ,切点横坐标 x = 1),或者记为 $x \ln x \ge x 1$.
- ③ $\ln x \le x^2 x$. (由 $\ln x \le x 1$ 及 $x 1 \le x^2 x$ 切点横坐标是 x = 1),或者记为 $\frac{\ln x}{x} \le x 1$.
- ④ $\ln x \le \frac{1}{2}(x^2 1)$ (由 $\ln x \le x 1 \le \frac{1}{2}(x^2 1)$),即在点 (1,0) 处三曲线相切.

在一些解答题的书写过程中,通常要用上"对数单身狗"模型,具体一些书写过程大家可以参照秒 l 的"对数单身狗,指数找基友"专题,这里不详述.

【例 1】(2019•江苏)在平面直角坐标系 xOy 中,点 A 在曲线 y = lnx 上,且该曲线在点 A 处的切线经过点 (-e, -1),(e 为自然对数的底数),则点 A 的坐标是_____.

【解析】设 $A(x_0, lnx_0)$,由 y = lnx,得 $y' = \frac{1}{x}$, $\therefore y'|_{x=x_0} = \frac{1}{x_0}$,则该曲线在点 A 处的切线方程为 $y - lnx_0 = \frac{1}{x_0}(x - x_0)$, \therefore 切线经过点 (-e, -1), $\therefore -1 - lnx_0 = -\frac{e}{x_0} - 1$,即 $lnx_0 = \frac{e}{x_0}$,则 $x_0 = e$. $\therefore A$ 点坐标为 (e, 1). 故答案为: (e, 1).

注意: 此题可以想到过原点与 $f(x) = \ln x$ 的切线为 $y = \frac{x}{e}$,且过点 (-e, -1) ,故切点为 (e,1) .

【例 2】 (2018•雁江区月考) 设函数 f(x) = lnx - x + 2.

- (1) 讨论 f(x) 的单调性及零点个数.
- (2) 证明, 当 $x \in (1, +\infty)$ 时, $x-1 < x \ln x$;

【解析】 (1) 函数 $f(x) = \ln x - x + 2$ 的定义域为 $(0,+\infty)$, 其导函数 $f'(x) = \frac{1}{x} - 1 = \frac{1-x}{x}$, 由 f'(x) > 0 , 可得 0 < x < 1 ; 由 f'(x) < 0 ,可得 x > 1 . $\therefore f(x)$ 在 (0,1) 上单调递增,在 $(1,+\infty)$ 上单调递减。当 x = 1 时, f(x) 取 得极大值为 f(1) = 1 > 0 ,又 $f(\frac{1}{e^2}) = -\frac{1}{e^2} < 0$, $f(e^2) = 4 - e^2 < 0$, $\therefore f(x)$ 有两个零点;

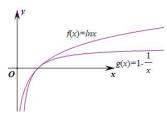
(2) 法一: 证明: 要证 $x-1 < x \ln x$,即证 $x \ln x - x + 1 > 0$,设 $g(x) = x \ln x - x + 1$, $x \in (1, +\infty)$,则 $g'(x) = \ln x$, $x \in (1, +\infty)$ $x \in (1, +\infty)$, $x \in (1, +\infty)$ $x \in (1,$

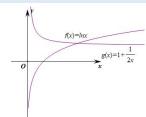
法二: (对数单身狗) 要证 x-1 < x lnx ,即证 $1-\frac{1}{x} < lnx$,构造函数 $g(x) = lnx - 1 + \frac{1}{x}$, $g'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x-1}{x^2}$ 显然 $: x \in (1, +\infty)$, : g'(x) > 0 , : x - 1 < x lnx .

【解析】法一: :: 函数 $f(x) = \frac{a}{x} + \ln x - 1$, :: $f'(x) = -\frac{a}{x^2} + \frac{1}{x} = \frac{x - a}{x^2}$, x > 0, 当 $a \le 0$ 时, $f'(x) = \frac{x - a}{x^2} > 0$ 恒成立, f(x) 是增函数, $x \to +\infty$ 时, $f(x) \to +\infty$, f(1) = a - 1 < 0, 函数 $f(x) = \frac{a}{x} + \ln x - 1$ 有且仅有一个零点; 当 a > 0 时, 令 f'(x) > 0, 解得: x > a, 令 f'(x) < 0, 解得: x < a, 故 f(x) 在 (0,a) 递减, 在 $(a, +\infty)$ 递增,

故只需 $f(x)_{min}=f(a)=lna=0$,解得: a=1,综上: 实数 a 的取值范围为 $(-\infty$, $0]\cup\{1\}$. 故选: A .

法二: a>0 时 $\frac{a}{x}$ 属于凹函数,根据 $\ln x \le x-1$,将 $\frac{1}{x}$ 替换 x 得, $\ln x \ge 1-\frac{1}{x}$,切点为 (1,0) ,故 a=1 时,有仅有一个零点,a>1 或者 0<a<1 均没有相切情况;当 $a\le 0$, $\frac{a}{x}$ 属于凸函数,与 $\ln x$ 一定会有交点,如图所示,实数 a 的取值范围为 $(-\infty$, $0] \cup \{1\}$. 故选 A .





【例 4】(2019•湖北期中)已知函数 $f(x) = a \ln x + x^2 - (a+2)x$ 恰有两个零点,则实数的取值范围是(

A.
$$(-1, 0)$$

B.
$$(-1, +\infty)$$

C.
$$(-2, 0)$$

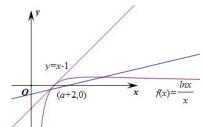
D.
$$(-2, -1)$$

【解析】法一: 由 $alnx + x^2 - (a+2)x = 0$ 得 $a = \frac{x^2 - 2x}{x - lnx}$, 令 $g(x) = \frac{x^2 - 2x}{x - lnx}$, 则 $g'(x) = \frac{(x-1)(x+2-2lnx)}{(x-lnx)^2}$,

 $g(x) = \frac{x^2 - 2x}{x - lnx}$, 在 (0,1) 上递减, 在 $(1,+\infty)$ 上递增, 所以 $g(x)_{min} = g(1) = -1$, 又当 $x \in (0,1)$ 时, $x^2 - 2x < 0$,

 $g(x) = \frac{x^2 - 2x}{x - \ln x} < 0$, 所以实数的取值范围是 (-1,0). 故选 A.

法二:由于 $\frac{\ln x}{x} \le x-1$,切点为 (1,0) ,根据题意 $\frac{\ln x}{x} = -\frac{x-(a+2)}{a}$ 有两交点,如图,直线的零点一定满足a+2>1,且直线必为单调递增,故a+1< a<0时一定有两交点,当 $a\geq 0$ 时,直线和曲线仅有一个交点,故选a<0



【例 5】(2019•湖南模拟)已知函数 $f(x) = \frac{e^x}{x^2} + 2klnx - kx$,若 x = 2 是函数 f(x) 的唯一极值点,则实数 k 的

取值范围是(

A.
$$(-\infty, \frac{e^2}{4}]$$

B.
$$\left(-\infty,\frac{e}{2}\right]$$

C.
$$(0,2]$$

D.
$$[2, +\infty)$$

【解析】法一:函数 f(x) 的定义域是 $(0,+\infty)$, $f'(x) = \frac{e^x(x-2)}{x^3} + \frac{2k}{x} - k = \frac{(e^x - kx^2)(x-2)}{x^3}$,

 $\because x=2$ 是函数 f(x) 的唯一一个极值点, $\therefore x=2$ 是导函数 f'(x)=0 的唯一根, $\therefore e^x-kx^2=0$ 在 $(0,+\infty)$ 无变号

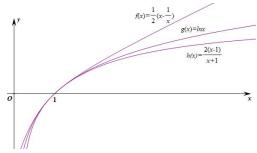
零点,即 $k = \frac{e^x}{x^2}$ 在 x > 0 上无变号零点,令 $g(x) = \frac{e^x}{x^2}$,因为 $g'(x) = \frac{e^x(x-2)}{x^3}$,所以 g(x) 在 (0,2) 上单调递减,在 x > 2 上单调递增所以 g(x) 的最小值为 $g(2) = \frac{e^2}{4}$,所以必须 $k < \frac{e^2}{4}$,故选 A.

法二(同构式切线放缩法): $f(x) = \frac{e^x}{r^2} + 2klnx - kx = \frac{e^x}{r^2} - kln\frac{e^x}{r^2}$, 令 $\frac{e^x}{r^2} = t$, f(t) = t - klnt, $f'(t) = 1 - \frac{k}{t} = \frac{t - k}{t}$,

显然 $e^x \ge ex \Rightarrow e^{\frac{x}{2}} \ge \frac{ex}{2} \Rightarrow e^x \ge \frac{e^2}{4} x^2$,当仅当 x = 2 时等号成立,故 $t > \frac{e^2}{4}$ 时, f'(t) = 0 无解,所以必须 $k \le \frac{e^2}{4}$,故选 A.

注意:关于复合函数极值点和单调性,就是内函数取得极值时,外函数同时取得极值,则此函数是取得唯一极值的;由于内函数的值域是外函数的定义域,如果只有一个极值,那么在内函数的值域范围内,外函数的导函数在此定义域区间内一定无零点,否则会出现多个极值.

第二讲 由lnx 在零点两侧出现的不同放缩方向引起的问题



证明: 构造函数 $f(x) = \ln x - \frac{1}{2}(x - \frac{1}{x})$,则 $f'(x) = \frac{1}{x} - \frac{1}{2} - \frac{1}{2x^2} = -\frac{(x-1)^2}{2x^2} \le 0$,而 f(1) = 0 ,故当 0 < x < 1 时, $\ln x > \frac{1}{2}(x - \frac{1}{x})$; 当 $x \ge 1$ 时 $\ln x \le \frac{1}{2}(x - \frac{1}{x})$.

构造函数
$$g(x) = \ln x - \frac{2(x-1)}{x+1}$$
 ,则 $g'(x) = \frac{1}{x} - \frac{4}{(x+1)^2} = \frac{(x-1)^2}{x(x+1)^2} \ge 0$,而 $f(1) = 0$,故当 $0 < x < 1$ 时,

$$\ln x < \frac{2(x-1)}{x+1}$$
; 当 $x \ge 1$ 时, $\ln x \ge \frac{2(x-1)}{x+1}$ (证明对数平均不等式的常用模型).

把上式中的x换成x+1,得:

【例 6】(2019•沈阳模拟)设函数 $f(x) = p(x - \frac{1}{x}) - 2lnx$, $g(x) = \frac{2e}{x} (p$ 是实数, e 为自然对数的底数)

- (1) 若 f(x) 在其定义域内为单调函数,求 p 的取值范围;
- (2) 若在[1, e] 上至少存在一点 x_0 , 使得 $f(x_0) > g(x_0)$ 成立, 求 p 的取值范围.

【解析】(1)
$$f'(x) = \frac{px^2 - 2x + p}{x^2}$$
, 要使" $f(x)$ 为单调增函数", 转化为" $f'(x) \geqslant 0$ 恒成立", 即 $p \geqslant \frac{2x}{x^2 + 1} = \frac{2}{x + \frac{1}{x}}$

恒成立,又 $\frac{2}{x+\frac{1}{x}}$ \leqslant 1,所以当 $p\geqslant$ 1 时,f(x) 在 $(0,+\infty)$ 为单调增函数. 同理,要使"f(x) 为单调减函数",转

化为" $f'(x) \leqslant 0$ 恒成立,再转化为" $p \leqslant \frac{2x}{x^2+1} = \frac{2}{x+\frac{1}{x}}$ 恒成立",又 $\frac{2}{x+\frac{1}{x}} > 0$,所以当 $p \leqslant 0$ 时,f(x) 在 $(0,+\infty)$ 为

单调减函数. 综上所述, f(x) 在 $(0,+\infty)$ 为单调函数, p 的取值范围为 $p\geqslant 1$ 或 $p\leqslant 0$

(2) 因
$$g(x) = \frac{2e}{x}$$
 在 [1, e] 上为减函数, 所以 $g(x) \in [2, 2e]$

①当 $p \le 0$ 时,由(1)知 f(x) 在[1, e]上递减 $\Rightarrow f(x)_{max} = f(1) = 0 < 2$,不合题意

②当 $p \ge 1$ 时,由(1)知 f(x) 在[1,e]上递增,f(1) < 2,又 g(x) 在[1,e]上为减函数,

故只需
$$f(x)_{max} > g(x)_{min}$$
, $x \in [1, e]$, 即: $f(e) = p(e - \frac{1}{e}) - 2lne > 2 \Rightarrow p > \frac{4e}{e^2 - 1}$.

③当 $0 时,因 <math>x - \frac{1}{x} \geqslant 0$, $x \in [1 , e]$,所以 $f(x) = p(x - \frac{1}{x}) - 2lnx \leqslant (x - \frac{1}{x}) - 2lnx \leqslant e - \frac{1}{e} - 2lne < 2$ 不合题

意, 综上, p 的取值范围为 $(\frac{4e}{e^2-1}, +\infty)$.

【例 7】(2018•定州市期末)已知函数 $f(x) = \frac{1}{x} - x + alnx(a \in R)$ 在其定义域上不单调,则 a 的取值范围是_____.

【解析】 (1) f(x) 的定义域为 $(0,+\infty)$, $f'(x) = -\frac{x^2 - ax + 1}{x^2}$, $\Diamond g(x) = x^2 - ax + 1$, $\triangle = a^2 - 4$, $\triangle > 0$ 可

得 a > 2 或 a < -2 , ① 当 a < -2 时, 对称轴 $x = \frac{a}{2} < -1$, g(0) = 1 > 0 , 则 当 x > 0 时, g(x) > 0 , 即 f'(x) < 0 ,

则有 f(x) 在 $(0,+\infty)$ 递减,不合题意;②当 a>2 时,g(x) 的对称轴为 $x=\frac{a}{2}>1$,g(0)=1>0,则 g(x) 有两

个不等的实根 x_1 , x_2 , 且 $0 < x_1 < 1$, $x_2 > 1$, $x_1 x_2 = 1$, 当 $x \in (0, x_1)$, $x \in (x_2, +\infty)$, f'(x) < 0,

当 $x \in (x_1, x_2)$ 时,f'(x) > 0,即 f(x) 在 $(0,x_1)$, $(x_2, +\infty)$ 递减,在 (x_1, x_2) 递增.则有 a 的取值范围是 $(2, +\infty)$;故答案为: $(2, +\infty)$.

【例 8】(2018•益阳期末)已知函数 f(x) = lnx.

- (1) 当 x > 1 时,比较 f(x) 与 $\frac{2(x-1)}{x+1}$ 的大小;
- (2) 若 $g(x) = af(x) + x^3 ax(a \in R)$ 有两个极值点 x_1 , x_2 , 求证: $\frac{g(x_1) g(x_2)}{x_1 x_2} > 3\sqrt{a} \frac{2a}{3}$.

【解析】 (1) 令 $h(x) = f(x) - \frac{2(x-1)}{x+1} = lnx - \frac{2(x-1)}{x+1}$, $h'(x) = \frac{(x-1)^2}{x(x+1)^2} > 0$, 故 h(x) 在 x > 1 时是增函数,

h(x) > h(1) = 0, $\Re \ln x > \frac{2(x-1)}{x+1}$;

(2) $g(x) = alnx + x^3 - ax$, $g'(x) = \frac{3x^3 - ax + a}{x}$, 则 g'(x) 在 $(0, +\infty)$ 上有 2 个零点 x_1 , x_2 , 令 $p(x) = 3x^3 - ax + a$,

即 p(x) 在 $(0,+\infty)$ 上有 2 个零点 x_1 , x_2 , $p'(x)=9x^2-a$, 当 $a\leqslant 0$ 时, p'(x)>0 , p(x) 在 $(0,+\infty)$ 递增,不可

能有 2 个零点,故 a > 0,此时 $p(x_1) = p(x_2) = 0$,即 $3x_1^3 - ax_1 + a = 3x_2^3 - ax_2 + a$,

整理得 $x_1^2 + x_1x_2 + x_2^2 = \frac{a}{3}$,而 $\frac{g(x_1) - g(x_2)}{x_1 - x_2} = a \cdot \frac{\ln x_1 - \ln x_2}{x_1 - x_2} + (x_1^2 + x_1x_2 + x_2^2) - a = a \cdot \frac{\ln x_1 - \ln x_2}{x_1 - x_2} - \frac{2a}{3}$,

故要证 $\frac{g(x_1)-g(x_2)}{x_1-x_2} > 3\sqrt{a} - \frac{2a}{3}$,只需证明 $\frac{\ln x_1 - \ln x_2}{x_1-x_2} > \frac{3}{\sqrt{a}} = \frac{\sqrt{3}}{\sqrt{x_1^2+x_1x_2+x_2^2}}$,不妨设 $x_1 > x_2$,只需证明

故只需证明 > $\frac{2(t-1)}{t+1}$ > $\sqrt{\frac{3(t-1)^2}{t^2+t+1}}$, 化为 $4(t^2+t+1)$ > $3(t+1)^2 \Leftrightarrow (t-1)^2 > 0$, 故原不等式得证.

第三讲 常见的指对跨阶不等式的应用

⑦ $e^x - \ln(x+1) \ge 1$ (取等条件 x = 0);

证明: 构造函数 $f(x) = e^x - x - 1$, $e^x - x - 1 + x - \ln(x+1) = f(x) + f(\ln(x+1)) \ge 0$, 当仅当 x = 0 时等号成立; $\otimes e^x - \ln x \ge (e-1)x + 1$ (取等条件 x = 1)

证明: 构造函数 $f(x) = e^x - x - 1$, 故 $e^x - ex + x - 1 - \ln x = ef(x - 1) + f(\ln x) \ge 0$, 当仅当 x = 1 时等号成立;

 $9(e^x-1)\ln(x+1) \ge x^2(x \ge 0)$.

【证明】指对跨阶不等式,根据"放对再放指,不行找基友"的原理,由于x=0时,两边均为零,故可以考虑对数在x=0处的切线放缩,不等号方向必须一致,由于 $x\geq 1$ 时, $\ln x\geq \frac{2(x-1)}{x+1}$,故 $x\geq 0$ 时,

$$\ln(x+1) \ge \frac{2x}{x+2}$$
, 故只需证 $(e^x-1)\frac{2}{x+2} \ge x(x \ge 0)$, 即证 $e^x \ge \frac{x^2+2x}{2} + 1(x \ge 0)$, 构造 $h(x) = \frac{x^2+2x+2}{2e^x}$, 易

得
$$h'(x) = \frac{-x^2}{2e^x}$$
, 故 $h(x)_{\text{max}} = h(0) = 1$, 故 $(e^x - 1)\ln(x + 1) \ge x^2 (x \ge 0)$ 成立.

或者证 $e^x \ge \frac{1}{2} x^2 + x + 1$ 和 $\ln(x+1) \ge \frac{2x}{x+2}$,一步秒杀,但是需要的数感高,所以建议用沿着零点放缩对数.

【例 9】 (2019• 鄂州期中) 已知函数 $f(x) = \frac{\ln x}{x-1}$

- (1) 求 f(x) 的单调区间;
- (2) 证明: $f(x) > \frac{x+1}{e^x}$ (其中 e 是自然对数的底数, e = 2.71828...).

【解析】(1)定义域是(0, 1)
$$\cup$$
 (1, + ∞), $f'(x) = \frac{1 - \frac{1}{x} - lnx}{(x - 1)^2}$, $令 u(x) = 1 - \frac{1}{x} - lnx$, 则 $u'(x) = \frac{1 - x}{x^2}$,

所以u(x)在(0,1)递增,在 $(1,+\infty)$ 递减,故 $x \in (0,1) \cup (1,+\infty)$ 时,u(x) < u(1)=0,也即f'(x) < 0,

因此 f(x) 在 (0,1) 上单调递减;在 $(1,+\infty)$ 上也单调递减;

(2) 法一: 即证明
$$\frac{\ln x}{x-1} > \frac{x+1}{e^x}$$
, $x \in (0, 1) \cup (1, +\infty)$,

①先证明
$$x \in (1,+\infty)$$
 时的情况:此时问题等价于 $lnx - \frac{x^2 - 1}{e^x} > 0$,令 $g(x) = lnx - \frac{x^2 - 1}{e^x}$, $g'(x) = \frac{e^x + x^3 - 2x^2 - x}{xe^x}$

$$\Rightarrow h(x) = e^x + x^3 - 2x^2 - x$$
, $\emptyset h'(x) = e^x + 3x^2 - 4x - 1$, $h''(x) = e^x + 6x - 4 > 0$, $(x > 1)$,

故 h'(x) 在 $(1,+\infty)$ 递增,故 h'(x) > h'(1) = e-2 > 0,故 h(x) 在 $(1,+\infty)$ 递增,于是 h(x) > h(1) = e-2 > 0,

故
$$g'(x) > 0$$
 ,故 $g(x)$ 在 $(1,+\infty)$ 递增,因此 $x \in (1,+\infty)$ 时, $g(x) > g$ (1) = 0,即 $lnx - \frac{x^2 - 1}{e^x} > 0$

②下面证明 $x \in (0,1)$ 时的情况: 令 $m(x) = e^x - x - 1$, $g'(x) = e^x - 1 > 0$, 故 m(x) 在 [0,1) 递增, 于是 $x \in (0,1)$ 时,

$$m(x) > m(0) = 0$$
, $\text{id} \frac{x+1}{e^x} < 1$, $\text{for} n(x) = \ln x - x + 1$, $n'(x) = \frac{1-x}{x} > 0$, $\text{id} n(x) \neq (0, 1]$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} = \frac{1}{2}$, $\text{id} n(x) \neq (0, 1)$ $\text{id} n(x) \neq (0, 1$

$$n(x) < n$$
 (1) = 0, $\mathbb{P} \ln x - x + 1 < 0$, $\mathbb{P} \frac{\ln x}{x - 1} > 1 > \frac{x + 1}{e^x}$, $\mathbb{E} \stackrel{\text{!`}}{=} \frac{1}{e^x}$

法二: 构造
$$g(x) = \ln x - \frac{2(x-1)}{x+1}$$
 ,则 $g'(x) = \frac{1}{x} - \frac{4}{(x+1)^2} = \frac{(x-1)^2}{x(x+1)^2} \ge 0$,而 $f(1) = 0$,故当 $0 < x < 1$ 时,

$$\ln x < \frac{2(x-1)}{x+1}$$
; $\exists x \ge 1 \exists t$, $\ln x \ge \frac{2(x-1)}{x+1}$

①先证明 $x \in (1,+\infty)$ 时的情况: 此时问题等价于要证: $lnx - \frac{x^2 - 1}{e^x} \ge \frac{2(x-1)}{x+1} - \frac{x^2 - 1}{e^x} > 0$, 故只需证 $\frac{2}{x+1} > \frac{x+1}{e^x}$

故只需证
$$1 > \frac{(x+1)^2}{2e^x}$$
,构造 $h(x) = \frac{(x+1)^2}{2e^x}$, $h'(x) = \frac{-x^2+1}{2e^x}$,显然 $h(x)_{\text{max}} = h(1) = \frac{2}{e} < 1$

②下面证明 $x \in (0,1)$ 时的情况:此时问题等价于 $lnx - \frac{x^2 - 1}{e^x} < \frac{2(x-1)}{x+1} - \frac{x^2 - 1}{e^x} < 0$,故只需证 $\frac{2}{x+1} > \frac{x+1}{e^x}$

故只需证
$$1 > \frac{(x+1)^2}{2e^x}$$
, 显然 $h(x)_{\text{max}} = h(1) = \frac{2}{e} < 1$, 证毕.

总结: 零点两侧出现不同放缩的情况是证明指对不等式的最大利器!

【例 10】(2019•黄山一模)已知函数 $f(x) = e^x - \ln(x + m) + m$.

- (1) 设x = 0 是 f(x) 的极值点,求m 的值;
- (2) 在(1)的条件下, $f(x)-k \ge 0$ 在定义域内恒成立,求k的取值范围;
- (3) 当 *m*≤2 时,证明: f(x) > m.

【解析】 (1)
$$:: f'(x) = e^x - \frac{1}{x+m}$$
, $x = 0$ 是 $f(x)$ 的极值点, $:: f'(0) = 1 - \frac{1}{m} = 0$, 解得: $m = 1$.

经检验 m=1符合题意

(2) 法一: 由(I) 可知, 函数
$$f(x) = e^x - ln(x+1) + 1$$
, 其定义域为 $(-1,+\infty)$. $f'(x) = e^x - \frac{1}{x+1} = \frac{e^x(x+1) - 1}{x+1}$

设 $g(x) = e^x(x+1)-1$, 则 $g'(x) = e^x(x+1)+e^x>0$, 所以 g(x) 在 $(-1,+\infty)$ 上为增函数,

又: g(0) = 0, 所以当x > 0时, g(x) > 0, 即 f'(x) > 0; 当 -1 < x < 0时, g(x) < 0, f'(x) < 0.

所以 f(x) 在 (-1,0) 上为减函数;在 $(0,+\infty)$ 上为增函数;因此, f(x) 的最小值为 f(0)=2

 $f(x) - k \ge 0$ 在定义域内恒成立, 即 $k \le f(x)_{min} = 2$

法二: 构造 $g(x) = e^x - x - 1$, $f(x) - k = e^x - x - 1 + x - \ln(x+1) + 2 - k = g(x) + g(\ln(x+1)) + 2 - k \ge 0$, 当仅当 x=0 时等号成立, $:: k \le 2$;

(3) 证明: 要证 $f(x) = e^x - \ln(x+m) + m > m$, 即 $e^x - \ln(x+m) > 0$, 设 $F(x) = e^x - \ln(x+m)$, 即证 F(x) > 0,

当 $m \le 2$, $x \in (-m, +\infty)$ 时, $ln(x+m) \le ln(x+2)$, 故只需证明当m = 2 时, F(x) > 0,

法一: 当m=2时,函数 $F'(x)=e^x-\frac{1}{x+2}$ 在 $(-2,+\infty)$ 上为增函数,且F'(-1)<0,F'(0)>0,故F'(x)=0在

 $(-2,+\infty)$ 上有唯一实数根 x_0 , 且 $x_0 \in (-1,0)$. 当 $x \in (-2,x_0)$ 时, F'(x) < 0 ,当 $x \in (x_0,+\infty)$ 时, F'(x) > 0 ,

从而当 $x = x_0$ 时, F(x) 取得最小值. 由 $F'(x_0) = 0$, 得 $e^{x_0} = \frac{1}{x_0 + 2}$, $ln(x_0 + 2) = -x_0$,

故 $F(x) \geqslant F(x_0) = \frac{1}{x_0 + 2} + x_0 = \frac{(x_0 + 1)^2}{x_0 + 2} > 0$,综上,当 $m \leqslant 2$ 时,F(x) > 0 即 f(x) > m.

法二: $F(x) = e^x - \ln(x+2) = e^x - x - 1 + x + 2 - 1 - \ln(x+2) = g(x) + g(\ln(x+2)) \ge 0$, 由于取等条件不一, 故 F(x) > 0

达标训练

- 1. (2019•深圳二模) 若函数 $f(x) = x \sqrt{x} a \ln x$ 在区间 $(1, +\infty)$ 上存在零点,则实数 a 的取值范围为 (
 - A. $(0,\frac{1}{2})$
- B. $(\frac{1}{2}, e)$
- C. $(0,+\infty)$
- D. $(\frac{1}{2}, +\infty)$
- 2. (2018•洛阳期末) 若函数 f(x) = lnx ax 有两个不同的零点,则实数 a 的取值范围是______.
- 3. (2019•南京三模) 已知数 $f(x) = \frac{1}{2}x^2 alnx + x \frac{1}{2}$,对任意 $x \in [1, +\infty)$,当 $f(x) \ge mx$ 恒成立时实数 m的最大值为 1,则实数 a 的取值范围是
- 4. (2019•陕西一模) 已知函数 $f(x) = \frac{e^x}{x} + k(\ln x x)$, 若 x = 1 是函数 f(x) 的唯一极值点,则实数 k 的取值 范围是(
 - A. $(-\infty, e]$ B. $(-\infty, e)$
- C. $(-e,+\infty)$
- D. $[-e, +\infty)$

5. (2019•临渭模拟)若函数 $f(x) = x \ln x - a x^2$ 有两个极值点,则实数 a 的取值范围是()			
A. $(0,\frac{1}{2})$	B. $(\frac{1}{2},1)$	C. (1,2)	D. $(2,e)$
6. (2018•七星月考)已知 $f(x) = a \ln x + \frac{1}{2} x^2$,若方程 $f(x) = (a+1)x$ 恰有两个不同的解,则实数 a 的取值范			
围是()			
A. $(-\frac{1}{2},0)$	B. (-1,0)	C. (0,1)	D. $(1,+\infty)$
7. (2017•黄山期末) A. (-∞,1)		图象总在直线 $y = ax$ 的上方 C. $(1, +\infty)$	D . $(-\infty,0)$
8. (2018•厦门期末) 当 $x \in (0,+\infty)$ 时, $(ax - lnx)(ax - e^x) ≤ 0$,则实数 a 的取值范围是()			
A. (-∞, 1]	B. $[\frac{1}{e}, e]$	C. [1, e]	D. $[e, +\infty)$
9. $(2018$ •河南模拟)若函数 $f(x) = e^x - a1nx + 2ax - 1$ 在 $(0,+∞)$ 上恰有两个极值点,则 a 的取值范围为 $($			
A. $(-e^2, -e)$	B. $(-\infty, -\frac{e}{2})$	C. $(-\infty, -\frac{1}{2})$	D. $(-\infty, -e)$
10. (2019•四平期末)函数 $f(x) = \frac{\ln x}{x} - kx$ 在 $(0,+\infty)$ 上是增函数,则实数 k 的取值范围是			
11. $(2019$ •福建月考)已知函数 $f(x) = ax^2 - x \ln x$ 在 $[\frac{1}{e}, +\infty)$ 上单调递增,则实数 a 的取值范围是			
12. (2018•如皋月考)已知函数 $f(x) = bx - \frac{b}{x} + 2lnx$,若函数 $f(x)$ 在定义域上不是单调函数,则实数 b 的			
取值范围为			
13. (2019•榆林一模) 已知不等式 e^x –1 $≥$ kx + lnx ,对于任意的 x ∈ (0,+∞) 恒成立,则 k 的最大值			
14. (2019•天津二模)设 $a \in R$,函数 $f(x) = lnx - ax$.			
(1) 若 $a = 2$, 求曲线 $y = f(x)$ 在点 $P(1,-2)$ 处的切线方程;			
(2) 若 $f(x)$ 无零点,求 a 的取值范围;			
(3) 若 $f(x)$ 有两个相异零点 x_1 、 x_2 , 求证: $x_1 + x_2 > \frac{2}{a}$.			
15. (2018•邯郸期末)设函数 $f(x) = a(x-1) - x \ln x$.			
(1) 求函数 $f(x)$ 的单调区间;			
(2) 若对任意的 $x \ge 1$,恒有 $f(x) \le 0$ 成立,求实数 a 的取值范围.			
16. (2019•顺义二模)设函数 $f(x) = a\sqrt{x} - \ln x, a \in R$.			
(1) 若点(1,1) 在曲线 $y = f(x)$ 上,求在该点处曲线的切线方程;			
(2) 若 $f(x)$ ≥2 恒成立,求 a 的取值范围.			
17. (2019•荆门模拟)已知函数 $f(x) = \frac{e^x}{x} + a(x - \ln x)(a \in R)$.			
(1) 当 $a = -e$ 时,求 $f(x)$ 的最小值;			
(2) 若 $f(x)$ 有两个零点,求参数 a 的取值范围.			
18. (2019•济南模拟) 已知函数 $f(x) = \frac{1 + lnx}{x}$			
(1) 求函数 $f(x)$ 的极值;			
(2) 若 $a \ge 1$, 求证: $ae^x > (1 + \frac{1}{x})(1 + \ln x)$.			

- 19. (2019•成都模拟) 已知函数 $f(x) = lnx + a(\frac{1}{x} 1)$, $a \in R$.
- (1) 若 $f(x) \ge 0$, 求实数 a 取值的集合;
- (2) 证明: $e^x + \frac{1}{x} \ge 2 \ln x + x^2 + (e-2)x$.
- 20. (2018•沙坪坝期中)已知函数 $f(x) = \frac{lnx}{x-1}$.
- (1) 求 f(x) 的单调区间;
- (2) 证明: $f(x) > \frac{x+1}{e^x}$ (其中 e 是自然对数的底数, e = 2.71828). (参考例 9,不做详述.)
- 21. (2018•双流模拟) 已知函数 $f(x) = alnx e^x$;
- (1) 讨论 f(x) 的极值点的个数;
- (2) 若 a = 2, 求证: f(x) < 0.
- 22. (2019•辽阳一模) 已知函数 $f(x) = x \ln x$.
- (1) 若函数 $g(x) = \frac{f(x)}{x^2} \frac{1}{x}$, 求 g(x) 的极值;
- (2) 证明: $f(x)+1 < e^x x^2$. (参考数据: $ln2 \approx 0.69$, $1n3 \approx 1.10$, $e^{\frac{3}{2}} \approx 4.48$, $e^2 \approx 7.39$)
- 23. (2017•沈阳一模) 已知函数 $f(x) = e^x 1 x ax^2$.
- (1) 当 a = 0 时,求证: $f(x) \ge 0$;
- (2) 当 $x \ge 0$ 时,若不等式 $f(x) \ge 0$ 恒成立,求实数 a 的取值范围;
- (3) 若x > 0, 证明 $(e^x 1)ln(x + 1) > x^2$.